Journal of Solid State Electrochemistry

, Volume 21, Issue 4, pp 1137–1143 | Cite as

Laplace transform impedance analysis in the two-phase coexistence reaction of spinel Li1 + x Mn2O4 positive electrode

  • Masanobu Nakayama
  • Norimitsu Nishimura
  • Yuki Kondo
  • Hayami Takeda
  • Toshihiro Kasuga
Original Paper


We demonstrate the Laplace transform (LT) impedance technique for measuring electrochemical lithiation and delithiation in the two-phase system of spinel Li1 + x Mn2O4 (0 ≤ x ≤ 1). Square constant charge or discharge current pulses with various current densities are applied to the equilibrated Li1.25Mn2O4 system, and the response overpotential is recorded with various sampling rates. The LT of the current and overpotential as a function of time gives frequency-dependent impedance spectra. The results show asymmetric impedance between charge and discharge. In particular, inductive loop resistance, which may stem from the nucleation and growth mechanisms, is visible for mainly the anodic (charging) process. The LT impedance is fitted by a complex non-linear least squares technique. The resulting separated resistances decrease with current density in the lower frequency region, indicating non-ohmic Butler–Volmer-type behavior.


Li-ion battery Laplace transform impedance Spinel LiMn2O4 



This work was partially supported by the JST PRESTO program, a Grant-in-Aid for Scientific Research (no. 257959) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and the “Elements Strategy Initiative to Form Core Research Center” (since 2012) of MEXT.

Supplementary material

10008_2016_3465_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb.)


  1. 1.
    Thackeray MM (1997) Manganese oxides for lithium batteries. Progress in Solid State Chemistry 25(1–2):1–71CrossRefGoogle Scholar
  2. 2.
    Ohzuku T, Kitagawa M, Hirai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous cell III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J Electrochem Soc 137:769CrossRefGoogle Scholar
  3. 3.
    Guyomard D, Tarascon JM (1994) The carbon/Li1+xMn2O4 system. Solid State Ionics 69:222CrossRefGoogle Scholar
  4. 4.
    Masquelier C, Tabuchi M, Ado K, Kanno R, Kobayashi Y, Maki Y, Nakamura O, Goodenough JB (1996) Chemical and magnetic characterization of spinel materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 system. J Solid State Chem 123(2):255–266CrossRefGoogle Scholar
  5. 5.
    Okubo M, Mizuno Y, Yamada H, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2010) Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 4(2):741–752CrossRefGoogle Scholar
  6. 6.
    Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20(3):289–305CrossRefGoogle Scholar
  7. 7.
    Nakayama M, Taki H, Nakamura T, Tokuda S, Jalem R, Kasuga T (2014) Combined computational and experimental study of Li exchange reaction at the surface of spinel LiMn2O4 as a rechargeable Li-ion battery cathode. J Phys Chem C 118(47):27245–27251CrossRefGoogle Scholar
  8. 8.
    Bruce PG, Saidi MY (1992) The mechanism of electrointercalation. J Electroanal Chem 322:93CrossRefGoogle Scholar
  9. 9.
    Allen JL, Jow TR, Wolfenstine J (2007) Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition. Chem Mater 19(8):2108–2111CrossRefGoogle Scholar
  10. 10.
    Allen JL, Jow TR, Wolfenstine J (2008) Analysis of the FePO4 to LiFePO4 phase transition. J Solid State Electrochem 12:1031CrossRefGoogle Scholar
  11. 11.
    Oyama G, Yamada Y, Natsui R-i, Nishimura S-i, Yamada A (2012) Kinetics of nucleation and growth in two-phase electrochemical reaction of LixFePO4. J Phys Chem C 116(13):7306–7311CrossRefGoogle Scholar
  12. 12.
    Bai P, Cogswell DA, Bazant MZ (2011) Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett 11(11):4890–4896CrossRefGoogle Scholar
  13. 13.
    Huang J, Ge H, Li Z, Zhang J (2015) Dynamic electrochemical impedance spectroscopy of a three-electrode lithium-ion battery during pulse charge and discharge. Electrochim Acta 176:311–320CrossRefGoogle Scholar
  14. 14.
    Huang J, Zhang J, Li Z, Song S, Wu N (2014) Exploring differences between charge and discharge of LiMn2O4/Li half-cell with dynamic electrochemical impedance spectroscopy. Electrochim Acta 131:228–235CrossRefGoogle Scholar
  15. 15.
    Takano K, Nozaki K, Saito Y, Kato K, Negishi A (2000) Impedance spectroscopy by voltage-step chronoamperometry using the Laplace transform method in a lithium-ion battery. J Electrochem Soc 147(3):922–929CrossRefGoogle Scholar
  16. 16.
    Takano K, Nozaki K, Saito Y, Negishi A, Kato K, Yamaguchi Y (2000) Simulation study of electrical dynamic characteristics of lithium-ion battery. J Power Sources 90(2):214–223CrossRefGoogle Scholar
  17. 17.
    Nakayama M, Iizuka K, Shiiba H, Baba S, Nogami M (2011) Asymmetry in anodic and cathodic polarization profile for LiFePO4 positive electrode in rechargeable Li ion battery. J Ceram Soc Jpn 119(1393):692–696CrossRefGoogle Scholar
  18. 18.
    Nakayama M, Ikuta H, Uchimoto Y, Wakihara M (2003) Study on the AC impedance spectroscopy for the Li insertion reaction of LixLa1/3NbO3 at the electrode-electrolyte interface. J Phys Chem B 107(38):10603–10607CrossRefGoogle Scholar
  19. 19.
    Yadav DK, Chauhan DS, Ahamad I, Quraishi MA (2013) Electrochemical behavior of steel/acid interface: adsorption and inhibition effect of oligomeric aniline. RSC Adv 3(2):632–646CrossRefGoogle Scholar
  20. 20.
    Keddam M, Kuntz C, Takenouti H, Schustert D, Zuili D (1997) Exfoliation corrosion of aluminium alloys examined by electrode impedance. Electrochim Acta 42(1):87–97CrossRefGoogle Scholar
  21. 21.
    Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Impedance spectroscopy. Wiley, Inc., pp 1–26Google Scholar
  22. 22.
    Bai P, Tian G (2013) Statistical kinetics of phase-transforming nanoparticles in LiFePO4 porous electrodes. Electrochim Acta 89:644–651CrossRefGoogle Scholar
  23. 23.
    Orvananos B, Yu HC, Abdellahi A, Malik R, Grey CP, Ceder G, Thornton K (2015) Kinetics of nanoparticle interactions in battery electrodes. J Electrochem Soc 162(6):A965–A973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Frontier Research Institute for Materials Science (FRIMS), Nagoya Institute of TechnologyNagoyaJapan
  2. 2.PRESTO, Japan Science and Technology AgencySaitamaJapan
  3. 3.Unit of Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan
  4. 4.Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN)National Institute of Materials Science (NIMS)TsukubaJapan
  5. 5.Department of Frontier MaterialsNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations