Skip to main content
Log in

Rapid hydrothermal synthesis of Li3VO4 with different favored facets

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Here, we demonstrate a new, rapid, and flexible hydrothermal method using the V2O5 and LiOH as the precursors to synthesize Li3VO4. The ratios of precursor of V2O5 and LiOH can be changed in a wide range to control different preferred facets and morphologies, and the reason has been discussed from the structure of Li3VO4. The electrical performance of the Li3VO4 has also been systematically investigated. The thus-synthesized Li3VO4 exhibits significantly improved rate capability and cycling life compared with commercial graphite, synthesized Li4Ti5O12, and previously reported results on Li3VO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Lin B, Yin Q, Hu H, Lu F, Xia H (2014) LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. J Solid State Chem 209:23–28

    Article  CAS  Google Scholar 

  2. Nair JR, Destro M, Bella F, Appetecchi GB, Gerbaldi C (2016) Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J Power Sources 306:258–267

    Article  CAS  Google Scholar 

  3. Porcarelli L, Gerbaldi C, Bella F, Jijeesh RN (2016) Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci Rep 6:19892 1-14

    Article  CAS  Google Scholar 

  4. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 5:139–164

    Article  Google Scholar 

  5. Cui L, Yang Y, Hsu C, Cui Y (2009) Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9:3370–3374

    Article  CAS  Google Scholar 

  6. Bae J (2011) Fabrication of carbon microcapsules containing silicon nanoparticles–carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery. J Solid State Chem 184:1749–1755

    Article  CAS  Google Scholar 

  7. Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  8. Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X (2015) Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mater Interf 7:2280–2285

    Article  CAS  Google Scholar 

  9. Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y, Zhu K (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060

    Article  CAS  Google Scholar 

  10. Li H, Liu X, Zhai T, Li D, Zhou H (2012) Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv Energy Mater 3:428–432

    Article  Google Scholar 

  11. Placke T, Siozios V, Schmitz R, Lux SF, Bieker P, Colle C, Meyer HW, Passerini S, Winter M (2012) Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries. J Power Sources 200:83–91

    Article  CAS  Google Scholar 

  12. Armstrong A, Lyness C, Panchmatia P, Islam M, Bruce P (2011) The lithium intercalation process in the low-voltage lithium battery anode Li1+ xV1− xO2. Nat Mater 10:223–229

    Article  CAS  Google Scholar 

  13. Malini R, Uma U, Sheela T, Ganesan M, Renganathan N (2009) Conversion reactions: a new pathway to realise energy in lithium-ion battery-review. Ionics 15:301–307

    Article  CAS  Google Scholar 

  14. Liu L, Tang W, Tian S, Shi Y, Wu Y (2011) LiV3O8 nanomaterial as anode with good cycling performance for aqueous rechargeable lithium batteries. Funct Mater Lett 4:315–318

    Article  CAS  Google Scholar 

  15. Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett 13:2036–2040

    Article  CAS  Google Scholar 

  16. Cui L, Ruffo R, Chan CK, Peng H, Cui Y (2008) Crystalline-amorphous core- shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495

    Article  Google Scholar 

  17. Kim H, Bak S, Kim K (2010) Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries. Electrochem Commun 12:1768–1771

    Article  CAS  Google Scholar 

  18. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  19. Chen J, Yang L, Fang S, Hirano SI, Tachibana K (2012) Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries. J Power Sources 200:59–66

    Article  CAS  Google Scholar 

  20. Song J, Park H, Kim K, Jo Y, Kim J, Jeong Y, Kim Y (2010) Electrochemical characteristics of lithium vanadate, Li1+ xVO2, new anode materials for lithium ion batteries. J Power Sources 195:6157–6161

    Article  CAS  Google Scholar 

  21. Kim W, Jeong Y, Choi H, Kim Y, Song J, Lee H, Lee Y (2011) New anode materials of Li1+ xV1− xO2 (0≤ x≤ 0.1) for secondary lithium batteries: correlation between structures and properties. J Appl Electrochem 41:803–808

    Article  CAS  Google Scholar 

  22. Shi Y, Wang J, Chou S, Wexler D, Li H, Ozawa K, Liu H, Wu Y (2013) Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett 13:4715–4720

    Article  CAS  Google Scholar 

  23. Kim W, Jeong Y, Lee Y, Kim Y, Song J (2013) Synthesis and lithium intercalation properties of Li3VO4 as a new anode material for secondary lithium batteries. J Power Sources 244:557–560

    Article  CAS  Google Scholar 

  24. Ke F, Huang L, Wei G, Xue L, Li J, Zhang B, Chen S, Fan X, Sun S (2009) One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim Acta 54:5825–5829

    Article  CAS  Google Scholar 

  25. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  CAS  Google Scholar 

  26. Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG (2010) Crystal habit-tuned nanoplate material of Li[Li1/3–2×/3NixMn2/3–x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 22:4364–4367

    Article  CAS  Google Scholar 

  27. Shi Y, Gao J, Abruña H, Li H, Liu H, Wexler D, Wang J, Wu Y (2014) The mechanism of the one-step synthesis of hollow-structured Li3VO4 as an anode for lithium-ion batteries. Chem-Eur J 20:5608–5612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from an Australian Research Council (ARC) Discovery Project (DP100103909), China National Distinguished Youth Scientists (NSFC No. 51425301) and STCSM (14520721800), is greatly appreciated. The authors acknowledge the use of facilities at the UOW Electron Microscopy Centre, including equipment funded by ARC Grant LE0237478. Many thanks also go to Dr. Tania Silver for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiazhao Wang or Yuping Wu.

Additional information

Yi Shi and Yi Zhang have equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhang, Y., Liu, L. et al. Rapid hydrothermal synthesis of Li3VO4 with different favored facets. J Solid State Electrochem 21, 2547–2553 (2017). https://doi.org/10.1007/s10008-016-3462-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3462-6

Keywords

Navigation