Skip to main content

Advertisement

Log in

Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Smart construction of advanced sulfur cathodes is indispensable for the development of high performance lithium–sulfur (Li–S) batteries. Hence, we report a novel modified sulfur cathode using conductive carbon black as carrier to load sulfur and vapor grown carbon fiber as bridges to connect sulfur/carbon black clusters. The carbon fiber-incorporated sulfur/carbon ternary electrode exhibits superior electrochemical performance with an initial discharge capacity of 1112 mAh g−1 at 0.2 C (1 C = 1675 mAh g−1) and 758 mAh g−1 at 1 C. And it maintains much higher Coulombic efficiency and capacity retention after 200 cycles than those of the sulfur/carbon binary electrode. Moreover, rate capability of the ternary electrode is enhanced greatly. The improved electrochemical performance is attributed to the addition of carbon fiber, which provides convenient paths for rapid transfer of electrons during the redox reaction of sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  2. Bruce PG (2008) Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179(21–26):752–760

    Article  CAS  Google Scholar 

  3. Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16(6):2019–2029

    Article  CAS  Google Scholar 

  4. Liu XM, Men CL, Gao PB, Zhuang SH, Tang H, Bao ZH (2016) Improved cycling performance of sulfur nanoparticles with a mussel inspired polydopamine coating. RSC Adv 6(3):1902–1906

    Article  CAS  Google Scholar 

  5. Zhu L, Zhu WC, Cheng XB, Huang JQ, Peng HJ, Yang SH, Zhang Q (2014) Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries. Carbon 75:161–168

    Article  CAS  Google Scholar 

  6. Li Y, Bai WQ, Wang DH, Niu XQ, Zhang YD, Tang H, Wang XL, Gu CD, Tu JP (2015) Synthesis and electrochemical performance of 0.6Li(3)V(2)(PO4)(3)center dot 0.4 Li-V-O composite cathode material for lithium ion batteries. Electrochim Acta 161:252–260

    Article  CAS  Google Scholar 

  7. Ji X, Nazar LF (2010) Advances in Li-S batteries. J Mater Chem 20(44):9821–9826

    Article  CAS  Google Scholar 

  8. Liu WL, Tu JP, Qiao YQ, Zhou JP, Shi SJ, Wang XL, Gu CD (2011) Optimized performances of core-shell structured LiFePO4/C nanocomposite. J Power Sources 196(18):7728–7735

    Article  CAS  Google Scholar 

  9. Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ (2007) A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem Commun 9(5):1228–1232

    Article  CAS  Google Scholar 

  10. Koetschau I, Richard MN, Dahn JR, Soupart JB, Rousche JC (1995) Orthorhombic LIMNO2 as a high-capacity cathode for Li-ion cells. J Electrochem Soc 142(9):2906–2910

    Article  CAS  Google Scholar 

  11. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 7:642–643

    Article  Google Scholar 

  12. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O-2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  13. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787

    Article  CAS  Google Scholar 

  14. Geng XY, Rao MM, Li XP, Li WS (2013) Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery. J Solid State Electrochem 17(4):987–992

    Article  CAS  Google Scholar 

  15. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200

    Article  CAS  Google Scholar 

  16. Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau FF (2015) Review on Li-sulfur battery systems: an integral perspective. Adv Energy Mater 5(16):1500212

    Article  Google Scholar 

  17. Zhang YG, Zhao Y, Bakenov Z, Gosselink D, Chen P (2014) Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. J Solid State Electrochem 18(4):1111–1116

    Article  CAS  Google Scholar 

  18. Li Z, Huang YM, Yuan LX, Hao ZX, Huang YH (2015) Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 92:41–63

    Article  CAS  Google Scholar 

  19. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032

    Article  CAS  Google Scholar 

  20. Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562

    Article  CAS  Google Scholar 

  21. Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46(5):1135–1143

    Article  CAS  Google Scholar 

  22. Li XG, Rao MM, Li WS (2016) Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium-sulfur battery. J Solid State Electrochem 20(1):153–161

    Article  CAS  Google Scholar 

  23. Wang DW, Zeng Q, Zhou G, Yin L, Li F, Cheng HM, Gentle IR, Lu GQM (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater ChemA 1(33):9382–9394

    Article  CAS  Google Scholar 

  24. Liu J, Wickramaratne NP, Qiao SZ, Jaroniec M (2015) Molecular-based design and emerging applications of nanoporous carbon spheres. Nat Mater 14(8):763–774

    Article  CAS  Google Scholar 

  25. Zhang ZA, Zhang ZY, Li J, Lai YQ (2015) Polydopamine-coated separator for high-performance lithium-sulfur batteries. J Solid State Electrochem 19(6):1709–1715

    Article  CAS  Google Scholar 

  26. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11(10):4288–4294

    Article  CAS  Google Scholar 

  27. Cheng XB, Huang JQ, Peng HJ, Nie JQ, Liu XY, Zhang Q, Wei F (2014) Polysulfide shuttle control: towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. J Power Sources 253:263–268

    Article  CAS  Google Scholar 

  28. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A1969–A1976

    Article  CAS  Google Scholar 

  29. Zhao XY, Tu JP, Lu Y, Cai JB, Zhang YJ, Wang XL, Gu CD (2013) Graphene-coated mesoporous carbon/sulfur cathode with enhanced cycling stability. Electrochim Acta 113(4):256–262

    Article  CAS  Google Scholar 

  30. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537

    Article  CAS  Google Scholar 

  31. Li XL, Cao YL, Qi W, Saraf LV, Xiao J, Nie ZM, Mietek J, Zhang JG, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J Mater Chem 21(41):16603–16610

    Article  CAS  Google Scholar 

  32. Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506

    Article  CAS  Google Scholar 

  33. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50(26):5904–5908

    Article  CAS  Google Scholar 

  34. Su YS, Manthiram A (2012) A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium-sulfur batteries. Electrochim Acta 77:272–278

    Article  CAS  Google Scholar 

  35. Su YS, Fu YZ, Manthiram A (2012) Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys 14(42):14495–14499

    Article  CAS  Google Scholar 

  36. Ji LW, Rao MM, Aloni S, Wang L, Cairns EJ, Zhang YG (2011) Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4(12):5053–5059

    Article  CAS  Google Scholar 

  37. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647

    Article  CAS  Google Scholar 

  38. Jeong BO, Kwon SW, Kim TJ, Lee EH, Jeong SH, Jung Y (2013) Effect of carbon black materials on the electrochemical properties of sulfur-based composite cathode for lithium-sulfur cells. J Nanosci Nanotechnol 13(12):7870–7874

    Article  CAS  Google Scholar 

  39. Niu XQ, Wang XL, Wang DH, Li Y, Zhang YJ, Zhang YD, Yang T, Yu T, Tu JP (2015) Metal hydroxide—a new stabilizer for the construction of sulfur/carbon composites as high-performance cathode materials for lithium-sulfur batteries. J Mater ChemA 3(33):17106–17112

    Article  CAS  Google Scholar 

  40. Jiang J, Zhu J, Ai W, Wang X, Wang Y, Zou C, Huang W, Yu T (2015) Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat Commun 6:8622

    Article  CAS  Google Scholar 

  41. Zhao CY, Liu LJ, Zhao HL, Krall A, Wen ZH, Chen JH, Hurley P, Jiang JW, Li Y (2014) Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries. Nanoscale 6(2):882–888

    Article  CAS  Google Scholar 

  42. Zhang K, Zhao Q, Tao ZL, Chen J (2013) Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res 6(1):38–46

    Article  CAS  Google Scholar 

  43. Zheng SY, Wen Y, Zhu YJ, Han Z, Wang J, Yang JH, Wang CS (2014) In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes. Adv Energy Mater 4(16):1400482

  44. Rao MM, Song XY, Cairns EJ (2012) Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells. J Power Sources 205:474–478

    Article  CAS  Google Scholar 

  45. Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruna HD (2013) Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc 135(44):16736–16743

    Article  CAS  Google Scholar 

  46. Yuan Y, Yu G, Cha JJ, Hui W, Vosgueritchian M, Yan Y, Bao Z, Yi C (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5(11):9187–9193

    Article  Google Scholar 

  47. Wang S, Zhao ZX, Xu H, Deng YF, Li Z, Chen GH (2015) Sulfur impregnated in tunable porous N-doped carbon as sulfur cathode: effect of pore size distribution. Electrochim Acta 173:282–289

    Article  CAS  Google Scholar 

  48. Fan Q, Liu W, Weng Z, Sun Y, Wang H (2015) Ternary hybrid material for high-performance lithium–sulfur battery. J Am Chem Soc 137(40):12946–12953

    Article  CAS  Google Scholar 

  49. He B, Li WC, Yang C, Wang SQ, Lu AH (2016) Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach. ACS Nano 10(1):1633–1639

    Article  CAS  Google Scholar 

  50. Zhao Y, Wu W, Li J, Xu Z, Guan L (2014) Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv Mater 26(30):5113–5118

    Article  CAS  Google Scholar 

  51. Ma L, Zhuang HL, Wei S, Hendrickson KE, Kim MS, Cohn G, Hennig RG, Archer LA (2015) Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 10(1):1050–1059

    Article  Google Scholar 

  52. Kim JH, Fu K, Choi J, Sun S, Kim J, Hu L, Paik U (2015) Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium-sulfur batteries. Chem Commun 51(71):13682–13685

    Article  CAS  Google Scholar 

  53. Miao L, Wang W, Yuan K, Yang Y, Wang A (2014) A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material. Chem Commun 50(87):13231–13234

    Article  CAS  Google Scholar 

  54. Li R, Zhang M, Li Y, Chen J, Yao B, Yu M, Shi G (2016) Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium-sulfur batteries. Phys Chem Chem Phys 18(16):11104–11110

    Article  CAS  Google Scholar 

  55. Liang XA, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J (2011) Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources 196(7):3655–3658

    Article  CAS  Google Scholar 

  56. Jeddi K, Sarikhani K, Qazvini NT, Chen P (2014) Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. J Power Sources 245:656–662

    Article  CAS  Google Scholar 

  57. Li LY, Liu XY, Zhu KL, Tian JH, Liu XS, Yang K, Shan ZQ (2015) PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries. J Solid State Electrochem 19(11):3373–3379

    Article  CAS  Google Scholar 

  58. Akridge JR, Mikhaylik YV, White N (2004) Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 175(1–4):243–245

    Article  CAS  Google Scholar 

  59. Canas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R (2013) Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta 97:42–51

    Article  CAS  Google Scholar 

  60. Wang C, Wan W, Chen JT, Zhou HH, Zhang XX, Yuan LX, Huang YH (2013) Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater ChemA 1(5):1716–1723

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51502263) and the Program for Innovative Research Team in University of Ministry of Education of China (IRT13037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangping Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xie, D., Wang, D. et al. Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. J Solid State Electrochem 21, 1203–1210 (2017). https://doi.org/10.1007/s10008-016-3460-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3460-8

Keywords

Navigation