Skip to main content
Log in

Structures and hydrogen storage performances of rare earth-Mg-Ni-Mn-based AB2-type alloys applied to Ni-MH battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The La1-x Ce x MgNi3.5Mn0.5 (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technology. The effects of Ce content and spinning rate on the structures and electrochemical performances of the alloys were investigated systematically. The identification of X-ray diffraction (XRD) and SEM revealed that the experimental alloys consisted of a major phase LaMgNi4 and a secondary phase LaNi5. The variations of Ce content and spinning rate obviously changed the phase abundance of the alloys, namely LaMgNi4 phase increasing and LaNi5 phase decreasing with the increase of Ce content and spinning rate. The electrochemical test showed that the as-cast and as-spun alloys achieved the maximum discharge capacities just at the first cycling without any activation. With the increase of Ce content and spinning rate, the discharge capacity of the alloys first increased and then decreased, and the electrochemical kinetics of the alloys, involving the high rate discharge ability (HRD), hydrogen diffusion coefficient (D), limiting current density (I L), and charge transfer rate, had a similar variation trend, whereas their cycle stabilities have shown increasing trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrog Energy 34:4569–4574

    Article  CAS  Google Scholar 

  2. Lan R, Irvine John TS, Tao SW (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrog Energy 37:1482–1494

    Article  CAS  Google Scholar 

  3. Li RF, Xu PZ, Zhao YM, Wan J, Liu XF, Yu RH (2014) The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2Ni3.0Co0.5-x Al x (x = 0-0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries. J Power Sources 270:21–27

    Article  CAS  Google Scholar 

  4. Kadir K, Noreus D, Yamashita I (2002) Structure determination of AMgNi4 (where A = Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J Alloy Compd 345:140–143

    Article  CAS  Google Scholar 

  5. Kohno T, Yoshida H, Kawashma F, Inaba T, Saskai I, Yamamoto M, Kanda M (2000) Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J Alloy Compd 311:L5–L7

    Article  CAS  Google Scholar 

  6. Wang ZM, Zhoua HY, Gu ZF, Cheng G, Yu AB (2004) Preparation of LaMgNi4 alloy and its electrode properties. J Alloy Compd 377:L7–L9

    Article  CAS  Google Scholar 

  7. Guénée L, Favre-Nicolin V, Yvon K (2003) Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J Alloy Compd 348:129–137

    Article  Google Scholar 

  8. Liu YF, Pan HG, Gao MX, Wang QD (2011) Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem 21:4743–4755

    Article  CAS  Google Scholar 

  9. Liu YF, Cao YH, Huang L, Gao MX, Pan HG (2011) Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J Alloy Compd 509:675–686

    Article  CAS  Google Scholar 

  10. Tian X, Yun GH, Wang HY, Shang T, Yao ZQ, Wei W, Liang XX (2014) Preparation and electrochemical properties of La–Mg–Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery. Int J Hydrog Energy 39:8474–8481

    Article  CAS  Google Scholar 

  11. Teresiak A, Uhlemann M, Thomas J, Eckert J, Gebert A (2014) Influence of Co and Pd on the formation of nanostructured LaMg2Ni and its hydrogen reactivity. J Alloy Compd 582:647–658

    Article  CAS  Google Scholar 

  12. Yang T, Zhai TT, Yuan ZM, Bu WG, Xu S, Zhang YH (2014) Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys. J Alloy Compd 617:29–33

    Article  CAS  Google Scholar 

  13. Zhai TT, Yang T, Yuan ZM, Zhang YH (2014) An investigation on electrochemical and gaseous hydrogen storage performances of as-cast La1-x Pr x MgNi3.6Co0.4 (x = 0-0.4) alloys. Int J Hydrog Energy 39:14282–14287

    Article  CAS  Google Scholar 

  14. Yang T, Yuan ZM, Bu WG, Jia ZC, Qi Y, Zhang YH (2016) Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy. Mater Design 93:46–52

    Article  CAS  Google Scholar 

  15. Zhang YH, Li BW, Ren HP, Wu ZW, Dong XP, Wang XL (2008) Investigation on structures and electrochemical characteristics of the as-cast and quenched La0.5Ce0.2Mg0.3Co0.4Ni2.6−x Mn x (x = 0–0.4) electrode alloys. J Alloy Compd 461:591–597

    Article  CAS  Google Scholar 

  16. Zhang YH, Cai Y, Zhao C, Zhai TT, Zhang GF, Zhao DL (2012) Electrochemical performances of the as-melt La0.75-x M x Mg0.25Ni3.2Co0.2Al0.1 (M = Pr, Zr; x = 0, 0.2) alloys applied to Ni/metal hydride (MH) battery. Int J Hydrog Energy 37:14590–14597

    Article  CAS  Google Scholar 

  17. Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel C, Mattern N (2005) In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloy Compd 398:156–164

    Article  CAS  Google Scholar 

  18. Zhang YH, Zhai TT, Yang T, Yuan ZM, Hou ZH, Qi Y (2015) Electrochemical hydrogen-storage performance of Mg20-x Y x Ni10 (x = 0-4) alloys prepared by mechanical milling. J Appl Electrochem 45:931–941

    Article  CAS  Google Scholar 

  19. Züttel A (2003) Materials for hydrogen storage. Mater Today 6:24–33

    Article  Google Scholar 

  20. Wu MS, Wu HR, Wang YY, Wan CC (2000) Surface treatment for hydrogen storage alloy of nickel/metal hydride battery. J Alloy Compd 302:248–257

    Article  CAS  Google Scholar 

  21. Wu Y, Hana W, Zhou SX, Lototsky MV, Solberg JK, Yartys VA (2008) Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys. J Alloy Compd 466:176–181

    Article  CAS  Google Scholar 

  22. Orimo S, Fujii H (2001) Materials science of Mg-Ni-based new hydrides. Appl Phys A Mater Sci Process 72(2001):167–186

    Article  CAS  Google Scholar 

  23. Liu YF, Pan HG, Gao MX, Lei YQ, Wang QD (2005) XRD study on the electrochemical hydriding/dehydriding behavior of the La–Mg–Ni–Co-type hydrogen storage alloys. J Alloy Compd 403:296–304

    Article  CAS  Google Scholar 

  24. Chartouni D, Meli F, Züttel A, Gross K, Schlapbach L (1996) The influence of cobalt on the electrochemical cycling stability of LaNi5-based hydride forming alloys. J Alloy Compd 241:160–166

    Article  CAS  Google Scholar 

  25. Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD (2008) Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrog Energy 33:6727–6733

    Article  CAS  Google Scholar 

  26. Zhang G, Popov BN, White RE (1995) Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc 142:2695–2698

    Article  Google Scholar 

  27. Cui N, Luo JL (1999) Electrochemical study of hydrogen diffusion behavior in Mg2Ni-type hydrogen storage alloy electrodes. Int J Hydrog Energy 24:37–42

    Article  CAS  Google Scholar 

  28. Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T (1993) Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloy Compd 202:183–197

    Article  CAS  Google Scholar 

  29. Ruggeri S, Roué L, Huot J, Schulz R, Aymard L, Tarascon JM (2002) Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni-MH batteries. J Power Sources 112:547–556

    Article  CAS  Google Scholar 

  30. Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL (2008) Cycle stabilities of the La0.7Mg0.3Ni2.55−x Co0.45M x (M = Fe, Mn, Al; x = 0, 0.1) electrode alloys prepared by casting and rapid quenching. J Alloy Compd 458:340–345

    Article  CAS  Google Scholar 

  31. Zhao DL, Zhang YH (2014) Research progress in Mg-based hydrogen storage alloys. Rare Metals 33:499–510

    Article  CAS  Google Scholar 

  32. Kleperis J, Wójcik G, Czerwinski A, Skowronski J, Kopczyk M, Beltowska-Brzezinska M (2001) Electrochemical behavior of metal hydrides. J Solid State Electr 5:229–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundations of China (51161015 and 51371094) and the Natural Science Foundation of Inner Mongolia, China (2015MS0558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-huan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yh., Li, Yq., Shang, Hw. et al. Structures and hydrogen storage performances of rare earth-Mg-Ni-Mn-based AB2-type alloys applied to Ni-MH battery. J Solid State Electrochem 21, 1015–1025 (2017). https://doi.org/10.1007/s10008-016-3455-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3455-5

Keywords

Navigation