Skip to main content
Log in

Silica veils-conductive diamond powder composite as a new propitious substrate for platinum electrocatalysts

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An innovative composite was obtained by a straightforward sol-gel procedure, involving boron-doped diamond powder (BDDP) incorporation into a SiO2 veil (SiO2V) matrix. Composite-coated glassy carbon plates were used as substrate for Pt electrochemical deposition, and the electrodes thus obtained (Pt/BDDP–SiO2V) were compared on a relative basis with those prepared in the absence of the silica matrix (Pt/BDDP). SEM measurements have shown that a BDDP substrate promotes Pt cluster formation, whereas on BDDP–SiO2V, particles are much smaller (ca. 45 nm to ca. 140 nm). The activity for CH3OH oxidation was checked by cyclic voltammetry, and it was found that at Pt/BDDP–SiO2V, the main anodic peak is shifted with ca. 0.35 V toward lower potentials, indicating a considerable improvement in the overall process kinetics. Stripping experiments together with long-term polarization measurements demonstrated that when deposited on the BDDP–SiO2V support, Pt particles are less susceptible to CO poisoning and this behavior was tentatively ascribed to the presence of a higher relative surface concentration of more stable, oxidized platinum species, as evidenced by XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ticianelli EA, Lima FHB (2014) In: Corti HR, Gonzalez ER (eds) Direct alcohol fuel cells: materials, performance, durability and applications. Dordrecht, Springer

    Google Scholar 

  2. Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS (2014) Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru? Chem Rev 114:12397–12429

    Article  CAS  Google Scholar 

  3. Dominguez-Dominguez S, Arias-Pardilla J, Berenguer-Murcia A, Morallon E, Cazorla-Amoros D (2008) Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J Appl Electrochem 38:259–268

    Article  CAS  Google Scholar 

  4. Li L, Xing Y (2007) Pt–Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J Phys Chem C 111:2803–2808

    Article  CAS  Google Scholar 

  5. Xu C, Cheng L, Shen P, Liu Y (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001

    Article  CAS  Google Scholar 

  6. Spataru T, Osiceanu P, Anastasescu M, Patrinoiu G, Munteanu C, Spataru N, Fujishima A (2014) Effect of the chemical termination of conductive diamond substrate on the resistance to carbon monoxide-poisoning during methanol oxidation of platinum particles. J Power Sources 261:86–92

    Article  CAS  Google Scholar 

  7. La-Torre-Riveros L, Guzman-Blas R, Mendez-Torres AE, Prelas M, Tryk DA, Cabrera CR (2012) Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl Mater Interfaces 4:1134–1147

    Article  CAS  Google Scholar 

  8. Cellorion V, Plana D, Florez-Montano J, Montes de Oca MG, Moore A, Lazaro AM, Pastor E, Fermin DJ (2013) Methanol oxidation at diamond-supported Pt nanoparticles: effect of the diamond surface termination. J Phys Chem C 117:21735–21742

    Article  Google Scholar 

  9. Xu C, Tian Z, Shen P, Jiang SP (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53:2610–2618

    Article  CAS  Google Scholar 

  10. Yuan H, Guo D, Qiu X, Zhu W, Chen L (2009) Influence of metal oxides on Pt catalysts for methanol electrooxidation using electrochemical impedance spectroscopy. J Power Sources 188:8–13

    Article  CAS  Google Scholar 

  11. Spataru T, Anastasescu M, Spataru N, Fujishima A (2013) Influence of cobalt oxide substrate on the resistance to fouling during methanol oxidation of platinum particles. Electrochem Commun 29:1–3

    Article  CAS  Google Scholar 

  12. Spataru T, Preda L, Osiceanu P, Munteanu C, Marcu M, Lete C, Spataru N, Fujishima A (2016) Electrochemical deposition of Pt–RuOx∙nH2O composites on conductive diamond and its application to methanol oxidation in acidic media. Electrocatalysis 7:140–148

    Article  CAS  Google Scholar 

  13. Gamero-Quijano A, Huerta F, Salinas-Torres D, Morallon E, Montilla F (2014) Enhancement of the electrochemical performance of SWCNT dispersed in a silica sol-gel matrix by reactive insertion of a conducting polymer. Electrochim Acta 135:114–120

    Article  CAS  Google Scholar 

  14. Doi T, Tagashira M, Iriyama Y, Abe T, Oguami Z (2012) Preparation and electrochemical properties of SiO2–non-graphitizable carbon composites as negative electrode materials for Li-ion batteries. J Appl Electrochem 42:69–74

    Article  CAS  Google Scholar 

  15. Tiwari A, Gong S (2008) Electrochemical study of chitosan-SiO2-MWNT composite electrodes for the fabrication of cholesterol biosensors. Electroanalysis 20:2119–2126

    Article  CAS  Google Scholar 

  16. Gamero-Quijano A, Huerta F, Salinas-Torres D, Morallon E, Montilla F (2013) Electrocatalytic performances of SiO2–SWCNT nanocomposites prepared by electroassisted deposition. Electrocatalysis 4:259–266

    Article  CAS  Google Scholar 

  17. Ren Y, Wei H, Huang X, Ding J (2014) A facile synthesis of SiO2@C@graphene composites as anode material for lithium ion batteries. Int J Electrochem Sci 9:7784–7794

    Google Scholar 

  18. Yoshida H (2003) Silica-based quantum photocatalysts for selective reactions. Curr Opin Solid State Mater Sci 7:435–442

    Article  CAS  Google Scholar 

  19. Andreev YG, Bruce PG (2008) Demonstrating structural deformation in an inorganic nanotube. J Am Chem Soc 130:9931–9934

    Article  CAS  Google Scholar 

  20. Kondo T, Sakamoto H, Kato T, Horitani M, Shitanda I, Itagaki M, Yuasa M (2011) Screen-printed diamond electrode: a disposable sensitive electrochemical electrode. Electrochem Commun 13:1546–1549

    Article  CAS  Google Scholar 

  21. Chaudhary YS, Ghatak J, Bhatta UM, Khushalani D (2006) One-step method for self-assembly of metal nanoparticles onto facetted hollow silica tubes. J Mater Chem 16:3619–3623

    Article  CAS  Google Scholar 

  22. Goldberger J, Fan R, Yang P (2006) Inorganic nanotubes: a novel platform for nanofluidics. Acc Chem Res 39:239–248

    Article  CAS  Google Scholar 

  23. Kono S, Saito T, Kang SH, Jung WY, Kim BY, Kawata H, Goto T, Kakefuda Y, Yeom HW (2010) Band diagram for chemical vapor deposition diamond surface conductive layer: presence of downward band bending due to shallow acceptors. Surf Sci 604:1148–1165

    Article  CAS  Google Scholar 

  24. Estrade-Szwarckopf H (2004) XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42:1713–1721

    Article  CAS  Google Scholar 

  25. Yagi I, Notsu H, Kondo T, Tryk DA, Fujishima A (1999) Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. J Electroanal Chem 473:173–178

    Article  CAS  Google Scholar 

  26. Notsu H, Yagi I, Tatsuma T, Tryk DA, Fujishima A (2000) Surface carbonyl groups on oxidized diamond electrodes. J Electroanal Chem 492:31–37

    Article  CAS  Google Scholar 

  27. Yang YF, Zhou YH (1996) Influence of carbon surface pre-oxidation on the properties of silver + carbon electrocatalysts. J Electroanal Chem 415:143–152

    Article  CAS  Google Scholar 

  28. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy database. NIST standard reference database 20, version 4.1, http://srdata.nist.gov/xps/

  29. Ribeiro MC, da Silva LG, Sumodjo PTA (2006) The influence of electrochemical pre-treatment of B-doped diamond films on the electrodeposition of Pt. J Braz Chem Soc 17:667–673

    Article  CAS  Google Scholar 

  30. Timofeeva EV, Tsirlina GA, Petrii OA (2003) Formation of rechargeable films on platinum in sulfuric acid solutions of isopolytungstates. Russ J Electrochem 39:716–726

    Article  CAS  Google Scholar 

  31. Kulesza PJ, Pieta IS, Rutkowska IA, Wadas A, Marks D, Klak K, Stobinski L, Cox JA (2013) Electrocatalytic oxidation of small organic molecules in acidic medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochim Acta 110:474–483

    Article  CAS  Google Scholar 

  32. Vidakovic T, Christov M, Sundmacher K (2007) The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim Acta 52:5606–5613

    Article  CAS  Google Scholar 

  33. Moulder JF, Stickle WE, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Co. Physical Electronics Division, Eden Prairie

    Google Scholar 

  34. Skuja L (1998) Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J Non-Cryst Solids 239:16–48

    Article  CAS  Google Scholar 

  35. Gritsenko VA, Novokov YN, Shaposhnikov AV, Morokov YN (2001) Numerical simulation of intrinsic defects in SiO2 and Si3N4. Semiconductors 35:997–1005

    Article  CAS  Google Scholar 

  36. Spataru N, Zhang X, Spataru T, Tryk DA, Fujishima A (2008) Platinum electrodeposition on conductive diamond powder and its application to methanol oxidation in acidic media. J Electrochem Soc 155:B264–B269

    Article  CAS  Google Scholar 

  37. Pietron JJ, Pomfret MB, Chervin CN, Long JW, Rolison DR (2012) Direct methanol oxidation at low overpotentials using Pt nanoparticles electrodeposited at ultrathin conductive RuO2 nanoskins. J Mater Chem 22:5197–5204

    Article  CAS  Google Scholar 

  38. Kabbabi A, Gloaguen F, Andolfatto F, Durand R (1994) Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. J Electroanal Chem 373:251–254

    Article  CAS  Google Scholar 

  39. Takasu Y, Iwazaki T, Sugimoto W, Murakami Y (2000) Size effects of platinum particles on the electro-oxidation of methanol in aqueous solution of HClO4. Electrochem Commun 2:671–674

    Article  CAS  Google Scholar 

  40. Godoi DRM, Perez J, Villullas HM (2007) Influence of particle size on the properties of Pt-Ru/C catalysts prepared by microemulsion method. J Electrochem Soc 154:B474–B479

    Article  CAS  Google Scholar 

  41. Petrii OA, Tsirlina GA (2001) Size effects in electrochemistry. Russ Chem Rev 70:285–298

    Article  CAS  Google Scholar 

  42. Ishitobi H, Ino Y, Nakagawa N (2016) Enhanced catalytic activity of Pt for electrooxidation of ethanol by using silica-carbon composite as the catalyst support. Key Eng Mater 698:47–52

    Article  Google Scholar 

  43. Delahay P (1965) Double layer and electrode kinetics. Wiley, New York

    Google Scholar 

  44. Spataru T, Osiceanu P, Preda L, Munteanu C, Spataru N, Fujishima A (2014) Influence of electroformation regime on the specific properties of cobalt oxide platinum composite films deposited on conductive diamond. Thin Solid Films 556:81–86

    Article  CAS  Google Scholar 

  45. Petry OA, Podlovchenko BI, Frumkin AN, Lal H (1965) The behavior of platinized-platinum and platinum-ruthenium electrodes in methanol solutions. J Electroanal Chem 10:253–269

    CAS  Google Scholar 

  46. Salazar-Banda GR, Suffredini HB, Avaca LA, Machado SAS (2009) Methanol and ethanol electro-oxidation on Pt–SnO2 and Pt–Ta2O5 sol-gel-modified boron-doped diamond surfaces. Mater Chem Phys 117:434–442

    Article  CAS  Google Scholar 

  47. Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ (1994) Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys. J Electrochem Soc 141:1795–1803

    Article  CAS  Google Scholar 

  48. Roth C, Martz N, Hahn F, Leger JM, Lamy C, Fuess H (2002) Characterization of differently synthesized Pt-Ru fuel cell catalysts by cyclic voltammetry, FTIR spectroscopy, and in single cells. J Electrochem Soc 149:E433–E439

    Article  CAS  Google Scholar 

  49. Schmidt TJ, Gasteiger HA, Behm RJ (1999) Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst. Electrochem Commun 1:1–4

    Article  CAS  Google Scholar 

  50. Meli G, Leger JM, Lamy C (1993) Direct electrooxidation of methanol on highly dispersed platinum-based catalyst electrodes: temperature effect. J Appl Electrochem 23:197–202

    Article  CAS  Google Scholar 

  51. Kumar LV, Ntim SA, Sae-Khow O, Janardhana C, Lakshminarayanan V, Mitra S (2012) Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells. Electrochim Acta 83:40–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI project number PN-II-ID-PCE-2011-3-0272. POS-CCE O 2.2.1 project INFRANANOCHEM-Nr. 19/01.03.2009 funded by EU (ERDF) and the Romanian government is also gratefully acknowledged for the XPS and SEM equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Spătaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spătaru, T., Kondo, T., Anastasescu, C. et al. Silica veils-conductive diamond powder composite as a new propitious substrate for platinum electrocatalysts. J Solid State Electrochem 21, 1007–1014 (2017). https://doi.org/10.1007/s10008-016-3454-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3454-6

Keywords

Navigation