Skip to main content

Advertisement

Log in

An asymmetric capacitor of internal parallel hybrid electrodes with amphoteric lithium vanadium phosphate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Given that the amphoteric Li3V2(PO4)3 (LVP) crystal exhibits different capacities in the high and low potential regions, we study its asymmetric capacitor and the mass balancing. Both the positive and the negative electrodes are prepared with 50 wt.% LVP balanced by activated carbon which provide battery and double-layer storage mechanisms; respectively. To retain the capacitor power feature with a sizable capacity, a proper internal hybridization is required to keep the battery mechanism functioning at high-rate cycling. The involvement of battery storage is assured if a high-voltage bulge is observed on the galvanostatic discharge curve. To preserve such a feature, the capacitor analysis indicates three factors are vital. A voltage window is wide enough, 4.0 V, such that the plateau of LVP around 3.6 V (vs. Li/Li+) may operate in discharging the positive electrode. The negative electrode is prelithiated to pin down the negative potential and allow the cell to utilize the permissible potential window. A proper mass ratio 2(+):1(−) provides sufficient but not too much battery storage in the positive electrode. Among the five mass ratios being studied, the 2(+):1(−) capacitor shows a respectable combination of specific energy 43 W h kg−1 and power 520 W kg−1 at 0.2 A g−1, with over 80 % capacity retention in 200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cericola D, Kotz R (2012) Electrochim Acta 72:1–17

    Article  CAS  Google Scholar 

  2. Cericola D, Novak P, Wokaun A, Kotz R (2011) J Power Sources 196:10305–10313

    Article  CAS  Google Scholar 

  3. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Nano Energy 2:213–234

    Article  CAS  Google Scholar 

  4. Chen K, Song S, Liu F, Xue D (2015) Chem Soc Rev 44:6230–6257

    Article  CAS  Google Scholar 

  5. Omar N, Daowd M, Hegazy O, den Bossche PV, Coosemans T, Mierlo JV (2012) Energies 5:4533–4568

    Article  Google Scholar 

  6. Miller JM, Bohn T, Dougherty TJ, Deshpande U (2009) Why hybridization of energy storage is essential for future hybrid plugin battery electric vehicles. IEEE Proceedings of the Energy Conversion Congress and Exposition 2614–2620

  7. Xiang C, Wang Y, Hu S, Wang W (2014) Energies 7:2874–2896

    Article  Google Scholar 

  8. Kumagai S, Ishikawa T, Sawa N (2015) J Energy Storage 2:1–7

    Article  Google Scholar 

  9. Decaux C, Lota G, Raymundo-Pinero E, Frackowiak E, Beguin F (2012) Electrochim Acta 86:282–286

    Article  CAS  Google Scholar 

  10. Khomenko V, Raymundo-Pinero E, Beguin F (2008) J Power Sources 177:643–651

    Article  CAS  Google Scholar 

  11. Smith PH, Tran TN, Jiang TL, Chung J (2013) J Power Sources 243:982–992

    Article  CAS  Google Scholar 

  12. Cericola D, Ruch PW, Kötz R, Novak P, Wokaun A (2010) Electrochem Commun 12:812–815

    Article  CAS  Google Scholar 

  13. Ehsani A, Shiri HM, Kowsari E, Safari R, Torabian J, Kazemi S (2016) J Colloid Interface Sci 478:181–187

    Article  CAS  Google Scholar 

  14. Naseri M, Fotouhi L, Ehsani A, Babaei F (2016) New J Chem 40:2565–2573

    Article  CAS  Google Scholar 

  15. Shayeh JS, Ehsani A, Ganjali MR, Norouzi P, Jaleh B (2015) Appl Surf Sci 353:594–599

    Article  Google Scholar 

  16. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) J Am Chem Soc 125:10402–10411

    Article  CAS  Google Scholar 

  17. Wang L, Bai J, Gao P, Wang X, Looney JP, Wang F (2015) Chem Mater 27:5712–5718

    Article  CAS  Google Scholar 

  18. Zhang X, Bockenfeld N, Berkemeier F (2014) Balducci A 7:1710–1718

    CAS  Google Scholar 

  19. Böckenfeld N, Balducci A (2013) J Power Sources 235:265–273

    Article  Google Scholar 

  20. Fan C, Han S, Zhang K, Li L, Zhang X (2014) New J Chem 38:4336–4343

    Article  CAS  Google Scholar 

  21. Chen Q, Zhang T, Qiao X, Li D, Yang J (2013) J Power Sources 234:197–200

    Article  CAS  Google Scholar 

  22. Kang J, Mathew V, Gim J, Kim S, Song J, Im WB, Han J, Lee JY, Kim J (2014) Sci Rep 4:4047

    Google Scholar 

  23. Zhou X, Liu Y, Guo Y (2009) Electrochim Acta 54:2253–2258

    Article  CAS  Google Scholar 

  24. Wang L, Zhou X, Guo Y (2010) J Power Sources 195:2844–2850

    Article  CAS  Google Scholar 

  25. Wang W, Zhang J, Lin Y, Jia Z, Dai C (2014) Electrochim Acta 116:490–494

    Article  CAS  Google Scholar 

  26. Zhang LL, Li Y, Peng G, Wang ZH, Ma J, Zhang WX, Hu XL, Huang YH (2012) J Alloys Compd 513:414–419

    Article  CAS  Google Scholar 

  27. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) J Power Sources 258:19–38

    Article  CAS  Google Scholar 

  28. Zhang X, Kuhnel RS, Schroeder M, Balducci A (2014) J Mater Chem A 2:17906–17913

    Article  CAS  Google Scholar 

  29. Rui XH, Yesibolati N, Chen CH (2011) J Power Sources 196:2279–2282

    Article  CAS  Google Scholar 

  30. Wei HY, Tsai DS, Hsieh CL (2015) RSC Adv 5:69176–69183

    Article  CAS  Google Scholar 

  31. Jiang T, Wang C, Chen G, Chen H, Wei Y, Li X (2009) Solid State Ionics 180:708–714

    Article  CAS  Google Scholar 

  32. Wang J, Zhang X, Liu J, Yang G, Ge Y, Yu Z, Wang R, Pan X (2010) Electrochim Acta 55:6879–6884

    Article  CAS  Google Scholar 

  33. Rui XH, Li C, Chen CH (2009) Electrochim Acta 54:3374–3380

    Article  CAS  Google Scholar 

  34. Ruch PW, Cericola D, Foelske A, Kotz R, Wokaun A (2010) Electrochim Acta 55:2352–2357

    Article  CAS  Google Scholar 

  35. Zhu M, Weber CJ, Yang Y, Konuma M, Starke U, Kern K, Bittner AM (2008) Carbon 46:1829–1840

    Article  CAS  Google Scholar 

  36. Morita M, Shibata T, Yoshimoto N, Ishikawa M (2002) Electrochim Acta 47:2787–2793

    Article  CAS  Google Scholar 

  37. Ehsani A (2015) Prog Org Coat 78:133–139

    Article  CAS  Google Scholar 

  38. Ehsani A, Mahjani MG, Jafarian M (2011) Turk J Chem 35:735–743

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ministry of Science and Technology of Taiwan for partial support through MOST-103-2221-E-011-153-MY3. The miscellaneous fee subsidy via one of Top University Projects 105H45140 by National Taiwan University of Science and Technology is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dah-Shyang Tsai.

Electronic supplementary material

ESM 1

(DOCX 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YC., Tsai, DS., Huang, YS. et al. An asymmetric capacitor of internal parallel hybrid electrodes with amphoteric lithium vanadium phosphate. J Solid State Electrochem 21, 839–847 (2017). https://doi.org/10.1007/s10008-016-3435-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3435-9

Keywords

Navigation