Skip to main content

Advertisement

Log in

High-performance hybrid supercapacitor based on pure and doped Li4Ti5O12 and graphene

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene nanosheets (G) and pure, as well as doped Mg-, Mn-, V-Li4Ti5O12, spinel structure have been synthesized. As-prepared materials were characterized by X-ray powder diffraction (XRD), FT-IR, scanning electron microscopy (SEM), cyclic voltammetry, and constant current discharge methods. The physical properties, as well as the possible role of the doped materials in supercapacitors, have been studied. The hybrid supercapacitor with pure or doped Li4Ti5O12 (LTO) anode was fabricated afterward to form the graphene/Li4Ti5O12. The specific energy, specific power, fast-charge capability, lifecycle, and self-discharge of the studied devices were compared. Metal doping did not change the phase structure while remarkably improved its capacitance at high charge/discharge rate. The hybrid supercapacitor utilizing pure or doped Li4Ti5O12 as an anode exhibits high capacitance compared to DLC because of the electrochemical process with intercalation/deintercalation of lithium into the spinel LTO. The capacitance of the hybrid supercapacitor decreases from 207 to 108 Fg−1 when discharged at several specific current densities ranging from 1 to 10 Ag−1. In contrast, the capacitance of the DLC is slightly decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harrop DP, Zhitomirsky, DV (2013) Electrochemical DLC supercapacitors 2013–2023, business report IDTechEx, July 2013. Available at www.idtechex.com. Accessed March, 2015

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. J Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  3. Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. J MRS Bull 36:513–522

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y, Dunn B (2014) Materials science. Where do batteries end and supercapacitors begin?. Science 343:1210–1211

    Article  CAS  Google Scholar 

  5. Jo MR, Lee GH, Kang YM (2015) Controlling solid- electrolyte- Interphase layer by coating P-type semiconductor NiOx on Li4Ti5O12 for high-energy-density lithium-ion batteries. J ACS Appl Mater Interfaces 7:27934–27939

    Article  CAS  Google Scholar 

  6. Thackeray MM (1995) Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J Electrochem Soc 142:2558–2563

    Article  CAS  Google Scholar 

  7. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR (1999) Development of a high-power lithium-ion battery. J Power Sources 81-82:902–905

    Article  CAS  Google Scholar 

  8. Goripart S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  Google Scholar 

  9. Baohua L, Feng N, Yan-Bing H, Hongda D, Quan-Hong Y, Jun M, Feiyu K, Chin-Tsau H (2011) Synthesis and characterization of long life Li4Ti5O12/C composite using amorphous TiO2 nanoparticles. Int J Electrochem Sci 6:3210–3223

    Google Scholar 

  10. Yi TF, Shu J, Zhu YR, Zhu XD, Zhu RS, Zhou AN (2010) Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0V. J Power Sources 195:285–288

    Article  CAS  Google Scholar 

  11. Huang S, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. J Nano Lett 4:1025–1028

    Article  CAS  Google Scholar 

  12. Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. J Nature Communications 2:516. doi:10.1038//ncomms1527

    Article  Google Scholar 

  13. Li J, Tang J, Zhang Z (2005) Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12. J Electrochem Commun 7:894–899

    Article  CAS  Google Scholar 

  14. Kavana L, Grätzel M (2002) Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. J Electrochem Solid-State Lett 5:A39–A41

    Article  Google Scholar 

  15. Yuan T, Cai R, Wang K, Ran R, Liu S, Shao Z (2009) Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. J Ceram Inter 35:1757–1768

    Article  CAS  Google Scholar 

  16. Yao W, Zhuang W, Wang XJ (2016) Solid state synthesis of Li4Ti5O12 hiskers from TiO2-B. J Mater Res Bull 75:204–210

    Article  CAS  Google Scholar 

  17. Birrozzi A, Copley M, Zamory J, Pasqualini M, Calcaterra S, Nobili F, Cicco AD, Rajantie H, Briceno M, Bilbé E, Cabo-Fernandez L, Hardwick LJ, Bresser D, Passerini S (2015) Scaling up nano Li4Ti5O12 for high-power lithium- ion anodes using large scale flame spray pyrolysis. J Electrochem Soc 162:A2331–A2338

    Article  CAS  Google Scholar 

  18. Nowack LV, Waser O, Yarema O, Wood V (2013) Rapid, Microwave-assisted synthesis of battery-grade lithium titanate (LTO). J RSC Adv 3:15618–15621

    Article  CAS  Google Scholar 

  19. Rao CNR, Sood AK (2013) Graphene: synthesis, properties, and phenomena. Wiley-VCH Verlag GmbH & Co. KgaA. doi:10.1002/9783527651122.ch1

  20. Sheshmani S, Fashapoyeh MA (2013) Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. J Acta Chim Slov 60:813–825

    CAS  Google Scholar 

  21. Klug HP, Alexander LE (1970) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  22. Laumann A (2010) Novel Routes to Li4Ti5O12 spinel: chatacterization and phase relations, Thesis, Facultät für Geowissenshaften der Ludwig Maximilians, Munchen University, Germany, 1

  23. Sun X, Radovanovicb PV, Cuia B (2015) Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. J New J Chem 39:38–63

    Article  CAS  Google Scholar 

  24. Mingjia Z, Chengcheng X, Jiangtian L, Ming L, Nianqiang W (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72

    Article  Google Scholar 

  25. Gregg SJ, Sing KSW (1967) The adsorption, surface area and porosity. Academic, London

    Google Scholar 

  26. Woo SW, Dokko K, Kanamura K (2007) Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries. Electrochim Acta 53:79–82

    Article  CAS  Google Scholar 

  27. Han D, Xu P, Jing X, Wang J, Yang P, Shen Q, Liu J, Song D, Gao Z, Zhang M (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sources 235:45–53

    Article  CAS  Google Scholar 

  28. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. J Nature Mater 7:845–854

    Article  CAS  Google Scholar 

  29. Reddy L, Endo T, Reddy GS (2012) Electronic (absorption) spectra of 3d transition metal complexes, chapter 1, advanced aspects of spectroscopy. Publisher: InTech

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khairy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairy, M., Faisal, K. & Mousa, M. High-performance hybrid supercapacitor based on pure and doped Li4Ti5O12 and graphene. J Solid State Electrochem 21, 873–882 (2017). https://doi.org/10.1007/s10008-016-3433-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3433-y

Keywords

Navigation