Skip to main content

Advertisement

Log in

Porous nitrogen-doped graphene for high energy density supercapacitors in an ionic liquid electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous nitrogen-doped graphene (PNG) has been prepared via simple thermal treatment of graphene oxide and urea, and the morphology and structure of the PNG have been characterized by using a range of electron microscopy, X-ray photoelectron spectroscopy, and other techniques. The electrochemical performances of the PNG have been investigated in an ionic liquid electrolyte by cyclic voltammetry and galvanostatic charge-discharge via both three-electrode and two-electrode configurations. The PNG electrode delivers a specific capacitance of 310 F g−1 at 1 A g−1 with good cycling stability over 4000 cycles. The high electrochemical performance is ascribed to the porous structure and nitrogen-doping in the PNG. The porous structure enables high specific surface area and rapid ion mobility, contributing to double layer capacitance, while the N-doping enhances electrochemical activity and electric conductivity, contributing to pseudocapacitance. Meanwhile, the ionic liquid electrolyte enables a very wide working voltage of 3 V, leading to a high energy density up to 163.8 W h kg−1. The fabricated supercapacitor can light up a LED for a long while with low self-discharge, showing good potential for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parsons R (1990) The electrical double layer: recent experimental and theoretical developments. Chem Rev 90:813–826

    Article  CAS  Google Scholar 

  2. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Plenum press, New York (N.Y.)

    Book  Google Scholar 

  3. Miller JR, Simon P (2008) Materials science—electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  5. Sun L, Wang L, Tian C, Tan T, Xie Y, Shi K, Li M, Fu H (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498–4506

    Article  CAS  Google Scholar 

  6. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  7. Rogers RD, Seddon KR (2003) Ionic liquids - solvents of the future? Science 302:792–793

    Article  Google Scholar 

  8. Wu X, Angell CA (2003) Solvent-free electrolytes with aqueous solution-like conductivities. Science 302:422–425

    Article  Google Scholar 

  9. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  10. Zhu Y, Su D, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  11. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442

    Article  CAS  Google Scholar 

  12. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  CAS  Google Scholar 

  13. Ruoff R (2008) Graphene: calling all chemists. Nat Nano 3:10–11

    Article  CAS  Google Scholar 

  14. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  15. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  16. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  17. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based Ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  18. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497–2504

    Article  Google Scholar 

  19. Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  20. Hu C, Wang L, Zhao Y, Ye M, Chen Q, Feng Z, Qu L (2014) Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage. Nanoscale 6:8002–8009

    Article  CAS  Google Scholar 

  21. Liang Y, Wu D, Fu R (2013) Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci Rep 3:1119

    Google Scholar 

  22. Li Z, Xu Z, Tan X, Wang H, Holt CMB, Stephenson T, Olsen BC, Mitlin D (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6:871–878

    Article  CAS  Google Scholar 

  23. Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with Superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  CAS  Google Scholar 

  24. Shin WH, Jeong HM, Kim BG, Kang JK, Choi JW (2012) Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett 12:2283–2288

    Article  CAS  Google Scholar 

  25. Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo JC, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nano 7:394–400

    Article  CAS  Google Scholar 

  26. Lherbier A, Blase X, Niquet YM, Triozon F, Roche S (2008) Charge transport in chemically doped 2D graphene. Phys Rev Lett 101:036808

    Article  Google Scholar 

  27. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free Electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 50:7132–7135

    Article  CAS  Google Scholar 

  28. Sheng-Feng H, Terakura K, Ozaki T, Ikeda T, Boero M, Oshima M, Ozaki JI, Miyata S (2009) First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: analysis of catalytic activity for the oxygen reduction reaction. Phys Rev B 80:235410

    Article  Google Scholar 

  29. Biel B, Blase X, Triozon F, Roche S (2009) Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Let 102:096803

    Article  Google Scholar 

  30. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance Ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  31. Sui ZY, Meng YN, Xiao PW, Zhao ZQ, Wei ZX, Han BH (2015) Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl Mater Interfaces 7:1431–1438

    Article  CAS  Google Scholar 

  32. Wang L, Gao Z, Chang J, Liu X, Wu D, Xu F, Guo Y, Jiang K (2015) Nitrogen-doped porous carbons as electrode materials for high-performance supercapacitor and dye-sensitized solar cell. ACS Appl Mater Interfaces 7:20234–20244

    Article  CAS  Google Scholar 

  33. Moussa S, Atkinson G, Samy ESM, Shehata A, AbouZeid KM, Mohamed MB (2011) Laser assisted photocatalytic reduction of metal ions by graphene oxide. J Mater Chem 21:9608–9619

    Article  CAS  Google Scholar 

  34. Abdelsayed V, Moussa S, Hassan HM, Aluri HS, Collinson MM, ElShall MS (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem B 1:2804–2809

    CAS  Google Scholar 

  35. Zhang C, Zhou H, Yu X, Shan D, Ye T, Huang Z, Kuang Y (2014) Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors. RSC Adv 4:11197–11205

    Article  CAS  Google Scholar 

  36. Chen J, Wang Y, Cao J, Liu Y, Ouyang JH, Jia D, Zhou Y (2015) Flexible and solid-state asymmetric supercapacitor based on ternary graphene/MnO2/carbon black hybrid film with high power performance. Electrochim Acta 182:861–870

    Article  CAS  Google Scholar 

  37. Lei Z, Liu Z, Wang H, Sun X, Lu L, Zhao XS (2013) A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte. J Mater Chem A 1:2313–2321

    Article  CAS  Google Scholar 

  38. Chen S, Duan J, Tang Y, Qiao SZ (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem Eur J 19:7118–7124

    Article  CAS  Google Scholar 

  39. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a Superhigh capacity and rate capability. Adv Mater 24:2047–2050

    Article  Google Scholar 

  40. Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai YW, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283

    Article  CAS  Google Scholar 

  41. Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc 135:1524–1530

    Article  CAS  Google Scholar 

  42. Li J, Yao R, Bai J, Cao C (2013) Two-dimensional mesoporous carbon nanosheets as a high-performance anode material for lithium-ion batteries. Chempluschem 78:797–800

    Article  CAS  Google Scholar 

  43. Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin HJ (2013) Microporous carbon Nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25:1993–1998

    Article  CAS  Google Scholar 

  44. Yeh TF, Syu JM, Cheng C, Chang TH, Teng HS (2010) Graphite oxide as a Photocatalyst for hydrogen production from water. Adv Funct Mater 20:2255–2262

    Article  CAS  Google Scholar 

  45. Hwang S, Lee S, Yu JS (2007) Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl Surf Sci 253:5656–5659

    Article  CAS  Google Scholar 

  46. Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon SH (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102

    Article  CAS  Google Scholar 

  47. Cao H, Zhou X, Qin Z, Liu Z (2013) Low-temperature preparation of nitrogen-doped graphene for supercapacitors. Carbon 56:218–223

    Article  CAS  Google Scholar 

  48. Yoo E, Nakamura J, Zhou H (2012) N-doped graphene nanosheets for Li-air fuel cells under acidic conditions. Energy Environ Sci 5:6928–6932

    Article  CAS  Google Scholar 

  49. Lin Z, Yao Y, Li Z, Liu Y, Li Z, Wong CP (2010) Solvent-assisted thermal reduction of graphite oxide. J Phys Chem C 114:14819–14825

    Article  CAS  Google Scholar 

  50. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  51. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  52. Isaac C, Luis AJ, Jifa T, Yong PC (2011) Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements. New J Phys 13:025008

    Article  Google Scholar 

  53. Okigawa Y, Kato R, Yamada T, Ishihara M, Hasegawa M (2015) Electrical properties and domain sizes of graphene films synthesized by microwave plasma treatment under a low carbon concentration. Carbon 82:60–66

    Article  CAS  Google Scholar 

  54. Congcong M, Xiaohong S, Dapeng C (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915

    Article  Google Scholar 

  55. Seredych M, Hulicova JD, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488

    Article  CAS  Google Scholar 

  56. Tamailarasan P, Ramaprabhu S (2012) Carbon nanotubes-graphene-Solidlike ionic liquid layer-based hybrid electrode material for high performance supercapacitor. J Phys Chem C 116:14179–14187

    Article  CAS  Google Scholar 

  57. Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163–3168

    Article  CAS  Google Scholar 

  58. Gao Y, Pandey GP, Turner J, Westgate CR, Sammakia B (2012) Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications. Nanoscale Res Lett 7:1–8

    Article  Google Scholar 

  59. Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S, Maria TL, Yang Y, Zhang H, Hng HH, Yan Q (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3:643–652

    Article  CAS  Google Scholar 

  60. Ewert JK, Weingarth D, Denner C, Friedrich M, Zeiger M, Schreiber A, Jackel N, Presser V, Kempe R (2015) Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. J Mater Chem 3:18906–18912

    Article  CAS  Google Scholar 

  61. Xu Z, Li Z, Holt CMB, Tan X, Wang H, Amirkhiz BS, Stephenson T, Mitlin D (2012) Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J Phys Chem Lett 3:2928–2933

    Article  CAS  Google Scholar 

  62. Armandi M, Bonelli B, Geobaldo F, Garrone E (2010) Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous Mesoporous Mater 132:414–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21271069, J1210040, 51238002, J1103312) and Science and Technology Program of Hunan Province (Grant No. 2015JC3049), and the Fundamental Research Funds for the Central Universities (No. 531107040898).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaopeng Fu or Yafei Kuang.

Electronic supplementary material

ESM 1

(DOCX 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Fu, C., Zhang, N. et al. Porous nitrogen-doped graphene for high energy density supercapacitors in an ionic liquid electrolyte. J Solid State Electrochem 21, 759–766 (2017). https://doi.org/10.1007/s10008-016-3431-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3431-0

Keywords

Navigation