Thermodynamic stability of solid phases in the system Cu–O–Al2O3 by means of the EMF and DSC-TGA techniques


Thermodynamic properties of solid phases in the Cu–O–Al2O3 system were measured by means of the EMF method with oxygen concentration galvanic cells based on stabilized zirconia solid electrolytes. The standard Gibbs energies of formation of pure copper oxides and copper aluminates from their component oxides were determined. Copper aluminates were also investigated calorimetrically by the DSC-TGA combined techniques. Based on the calorimetric measurements, the enthalpies and temperatures of spinel decomposition and delafossite melting were determined. The obtained results were discussed and compared with the available literature data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Schlesinger ME, King MJ, Sole KC, Davenport WGI (2011) Extractive metallurgy of copper (chapter 18), fifth edn. Elsevier, Oxford

    Google Scholar 

  2. 2.

    Malfliet A, Lotfian S, Scheunis L, Petkov V, Pandelaers L, Jones PT, Blanpain B (2014) Degradation mechanisms and use of refractory linings in copper production processes: a critical review. J Eur Ceram Soc 34(3):849–876

    CAS  Article  Google Scholar 

  3. 3.

    Rigby GR, Hamilton B (1961) A study of basic brick from copper anode furnaces. J Am Ceram Soc 44:201–205

    CAS  Article  Google Scholar 

  4. 4.

    Jacob KT, Alcock CB (1975) Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3. J Am Ceram Soc 58(5–6):192–195

    CAS  Article  Google Scholar 

  5. 5.

    Fujimura T, Tanaka S-I (1998) In-situ high temperature X-ray diffraction study of Cu/Al2O3 interface reactions. Acta Mater 46(9):3057–3061

    CAS  Article  Google Scholar 

  6. 6.

    YI S, Trumble KP, Gaskell DR (1999) Thermodynamic analysis of aluminate stability in the eutectic bonding of copper with alumina. Acta Mater 47(11):3221–3226

    CAS  Article  Google Scholar 

  7. 7.

    Seager CW, Kokini K, Trumble K, Krane MJM (2002) The influence of CuAlO2 on the strength of eutectically bonded Cu/Al2O3 interfaces. Scr Mater 46:395–400

    CAS  Article  Google Scholar 

  8. 8.

    Silvain JF, Bobet JL, Heintz JM (2002) Electroless deposition of copper onto alumina sub-micronic powders and sintering. Compos A: Appl Sci Manuf 33A(10):1387–1390

    CAS  Article  Google Scholar 

  9. 9.

    Tahir D, Tougaard S (2012) Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J Phys Condens Matter 24(17):175002/1–175002/8

    CAS  Article  Google Scholar 

  10. 10.

    Robertson J, Peacock PW, Towler MD, Needs R (2002) Electronic structure of p-type conducting transparent oxides. Thin Solid Films 411(1):96–100

    CAS  Article  Google Scholar 

  11. 11.

    Arjmand M, Knee CS, Leion H, Mattisson T (2015) Standard enthalpy of formation of CuAl2O4 revisited. Chem Eng Commun 202(5):694–697

    CAS  Article  Google Scholar 

  12. 12.

    Hallstedt B, Risold D, Gauckler LJ (1994) Thermodynamic assessment of the copper-​oxygen system. J Phase Equilib 15(5):483–499

    CAS  Article  Google Scholar 

  13. 13.

    Hallstedt B, Gauckler LJ (2003) Revision of the thermodynamic descriptions of the Cu-O, Ag-O, Ag-Cu-O, Bi-Sr-O, Bi-Ca-O, Bi-Cu-O, Sr-Cu-O, Ca-Cu-O and Sr-Ca-Cu-O systems. Calphad 27(2):177–191

    CAS  Article  Google Scholar 

  14. 14.

    Clavaguera-Mora MT, Touron JL, Rodriguez-Viejo J, Clavaguera N (2004) Thermodynamic description of the Cu-O system. J Alloys Compd 377(1–2):8–16

    CAS  Article  Google Scholar 

  15. 15.

    Shishin D, Decterov SA (2012) Critical assessment and thermodynamic modeling of the Cu-O and Cu-O-S systems. Calphad 38:59–70

    CAS  Article  Google Scholar 

  16. 16.

    Roberts HS, Smith FH (1921) The system copper: cupric oxide: oxygen. J Am Ceram Soc 43:1061–1070

    CAS  Google Scholar 

  17. 17.

    Gadalla AMM, Ford WF, White J (1963) Equilibrium relations in the system CuO-Cu2O-SiO2. Brit Ceram Trans J 62(1):45–66

    CAS  Google Scholar 

  18. 18.

    Fitzner K, Moser Z (1979) Activity of oxygen in dilute liquid copper-oxygen alloys. Metals Technol (London) 6(7):273–275

    CAS  Article  Google Scholar 

  19. 19.

    Boudene A, Hack K, Mohammad A, Neuschutz D, Zimmermann E (1992) Experimental investigation and thermochemical assessment of the system copper-oxygen. Zeitschrift fuer Metallkunde 83(9):663–668

    CAS  Google Scholar 

  20. 20.

    Kosenko AV, Emel’chenko GA (2001) Equilibrium phase relationships in the system Cu-O under high oxygen pressure. J Phase Equilib 22(1):12–19

    CAS  Article  Google Scholar 

  21. 21.

    Schmalzried H (1960) Measurement of the free enthalpy of reaction in the formation of spinel phases from the single oxides by aid of solid galvanic couples. Zeitschrift fuer Physikalische Chemie (Muenchen, Germany) 25:178–192

    CAS  Article  Google Scholar 

  22. 22.

    Misra SK, Chaklader ACD (1963) The system copper oxide–alumina. J Am Ceram Soc 46(10):509

    CAS  Article  Google Scholar 

  23. 23.

    Gadalla AMM, White J (1964) Equilibrium relation in the system Cu2O-CuO-Al2O3. Brit Ceram Trans J 63(1):39–62

    CAS  Google Scholar 

  24. 24.

    Navrotsky A, Kleppa OJ (1968) Thermodynamics of formation of simple spinels. J Inorg Nucl Chem 30(2):479–498

    CAS  Article  Google Scholar 

  25. 25.

    Zalazinskii AG, Balakirev VF, Chebotaev NM, Chufarov GI (1969) Thermodynamic analysis of the reduction, dissociation, and formation of copper aluminate, copper chromate(III), and copper ferrate(II) from the free elements and oxides. Zhurnal Neorganicheskoi Khimii 14(3):624–626

    CAS  Google Scholar 

  26. 26.

    Slobodyanyuk AA, Tret’yakov YD, Bessonov AF (1971) Thermodynamic stability of copper silicates and aluminates studied by emf. with a solid electrolyte. Zhurnal Fizicheskoi Khimii 45(7):1871–1872

    CAS  Google Scholar 

  27. 27.

    Tsuchida T, Furuichi R, Sukegawa T, Furudate M, Ishii T (1984) Thermoanalytical study on the reaction of the CuO-Al2O3 (η, γ and α) systems. Thermochim Acta 78(1–3):71–80

    CAS  Article  Google Scholar 

  28. 28.

    Trumble KP (1992) Thermodynamic analysis of aluminate formation at Fe/Al2O3 and Cu/Al2O3 interfaces. Acta Metall Mater 40(Suppl):S105–S110

    CAS  Article  Google Scholar 

  29. 29.

    Trumble KP (1999) Prediction of a critical temperature for aluminate formation in alumina/copper-oxygen eutectic bonding. J Am Ceram Soc 82(10):2919–2920

    CAS  Article  Google Scholar 

  30. 30.

    Guedes M, Ferreira JMF, Ferro AC (2008) A study on CuO-Al2O3 reaction paths. Adv Powder Metall Part Mater 5/1–5/13

  31. 31.

    Chen M, Zhao B (2013) Phase equilibrium studies of "Cu2O"-SiO2-Al2O3 system in equilibrium with metallic copper. J Am Ceram Soc 96(11):3631–3636

    CAS  Article  Google Scholar 

  32. 32.

    Hellstén N, Hamuyuni J, Taskinen P (2016) High-temperature phase equilibria of Cu-O-Al2O3 system in air. Can Metall Q 55(2):226–233

    Article  Google Scholar 

  33. 33.

    Åsbrink S, Waskowska A (1991) CuO: X-ray single-crystal structure determination at 196 K and room temperature. J Phys Condens Matter 3(42):8173–8180

    Article  Google Scholar 

  34. 34.

    Restori R, Schwarzenbach D (1986) Charge density in cuprite, Cu2O. Acta Crystallogr Sect B: Struct Sci B42(3):201–208

    CAS  Article  Google Scholar 

  35. 35.

    O’Neill HSC, James M, Dollase WA, Redfern SAT (2005) Temperature dependence of the cation distribution in CuAl2O4 spinel. Eur J Mineral 17(4):581–586

    Article  Google Scholar 

  36. 36.

    Ishiguro T, Kitazawa A, Mizutani N, Kato M (1981) Single-crystal growth and crystal structure refinement of CuAlO2. J Solid State Chem 40(2):170–174

    CAS  Article  Google Scholar 

  37. 37.

    Cohen ER, Cvitaš T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor AJ (2007) Quantities, units, and symbols in physical chemistry IUPAC green book, 3rd edn. IUPAC and RCS Publishing, Cambridge

    Book  Google Scholar 

  38. 38.

    Holmes RD, O’Neill HSC, Arculus RJ (1986) Standard Gibbs free energy of formation for Cu2O, NiO, CoO, and FexO: high resolution electrochemical measurements using zirconia solid electrolytes from 900 to 1400 K. Geochim Cosmochim Acta 50(11):2439–2452

    CAS  Article  Google Scholar 

  39. 39.

    Barin I (1989) Thermodynamical data of pure substances, part I, VCH Verlagsgesellschaft, Weinheim. VCH Publishers, New York

    Google Scholar 

Download references


This work was financially supported by the Finnish Metals Producers Fund and the Academy of Finland.

Author information



Corresponding author

Correspondence to Dmitry Sukhomlinov.

Electronic supplementary material


(PDF 264 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sukhomlinov, D., Tesfaye, F., Hellstén, N. et al. Thermodynamic stability of solid phases in the system Cu–O–Al2O3 by means of the EMF and DSC-TGA techniques. J Solid State Electrochem 22, 959–972 (2018).

Download citation


  • Thermodynamics
  • Electrochemistry
  • Calorimetry
  • Oxide
  • Aluminate
  • Copper