Skip to main content

Advertisement

Log in

An convenient strategy for IgG electrochemical immunosensor: the platform of topological insulator materials Bi2Se3 and ionic liquid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A substantial outstanding challenge in diagnostics and disease monitoring is the ability to assay rapidly and conveniently for protein biomarkers within complex biological media. Bi2Se3, as an important topological insulator (TI) material, was synthesized by a solvothermal method and characterized structurally. Subsequently, the composite of Bi2Se3 and ionic liquid ([BMIm]BF4 IL) was used as a sensing interface to cross-link goat anti-human immunoglobulin G (anti-IgG) via glutaraldehyde (GA) to fabricate an Bi2Se3/IL/GA/anti-IgG-carbon paste electrode (CPE). The nonspecific binding sites were enclosed with bovine serum albumin (BSA) to develop a label-free IgG immunosensor. The result showed that the proposed label-free IgG immunosensor exhibited high specificity with a detection limit of 0.8 ng mL−1 and linear range from 2 to 300, and 300 to 2200 ng mL−1. Besides, the immunosensor exhibited high specificity for IgG detection, acceptable reproducibility, and stability. Thus, the strategy reported here paved a simple way to design a sensitive and cost-effective sensing platform for extension to other disease biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reda E, Tavares AC, Mohamed S, Mohammed Z (2013) Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron 50:143–149

    Article  Google Scholar 

  2. Li R, Wu KB, Liu CX, Huang Y, Wang YY, Fang HF, Zhang HJ, Li CY (2014) 4-Amino-1-(3-mercapto-propyl)-pyridine hexafluorophosphate ionic liquid functionalized gold nanoparticles for IgG immunosensing enhancement. Anal Chem 86:5300–5307

    Article  CAS  Google Scholar 

  3. Li YY, Xu CX, Li H, Wang H, Wu D, Ma HM, Cai YY, Du B, Wei Q (2014) Nonenzymatic immunosensor for detection of carbohydrate antigen 15-3 based on hierarchical nanoporous PtFe alloy. Biosens Bioelectron 56:295–299

    Article  CAS  Google Scholar 

  4. Akter R, Rhee CK, Rahman MA (2014) Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels. Biosens Bioelectron 54:351–357

    Article  CAS  Google Scholar 

  5. Ma LN, Ning DL, Zhang HF, Zheng JB (2015) Au@Ag nanorods based electrochemical immunoassay for immunoglobulin G with signal enhancement using carbon nanofibers-polyamidoamine dendrimer nanocomposite. Biosens Bioelectron 68:175–180

    Article  CAS  Google Scholar 

  6. Zhang XY, Shen GY, Sun SY, Shen YM, Zhang CX (2014) Direct immobilization of antibodies on dialdehyde cellulose film for convenient construction of an electrochemical immunosensor. Sens Actuator B: Chem 200:304–309

    Article  CAS  Google Scholar 

  7. Liu GD, Lin YH (2007) Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. J Am Chem Soc 129:10394–10401

    Article  CAS  Google Scholar 

  8. Lai GS, Yan F, Wu J, Leng C, Ju HX (2011) Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem 83:2726–2732

    Article  CAS  Google Scholar 

  9. Harman TC, Paris B, Miller SE, Goering HL (1957) Preparation and some physical properties of Bi2Te3, Sb2Te3, and As2Te3. J Phys Chem Solids 2:181–190

    Article  CAS  Google Scholar 

  10. Qi XL, Hughes TL, Zhang SC (2008) Topological field theory of time-reversal invariant insulators. Phys Rev B 78:195424

    Article  Google Scholar 

  11. Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442

    Article  CAS  Google Scholar 

  12. Lin YF, Chang HW, Lu SY, Liu CW (2007) Preparation, characterization and electrophysical properties of nanostructured BiPO4 and Bi2Se3 derived from a structurally characterized, single-source precursor Bi[Se2P(OiPr)2]3. J Phys Chem C 111:18538–18544

    Article  CAS  Google Scholar 

  13. Liu H, Cui HM, Han F, Li X, Wang JY, Boughton RI (2005) Growth of Bi2Se3 nanobelts synthesized through a co-reduction method under ultrasonic irradiation at room temperature. Cryst Growth Des 5:1711–1714

    Article  CAS  Google Scholar 

  14. Xu HM, Chen G, Jin RC, Chen DH, Wang Y, Pei J (2014) Green synthesis of Bi2Se3 hierarchical nanostructure and its electrochemical properties. RSC Adv 4:8922–8929

    Article  CAS  Google Scholar 

  15. Wu SG, Liu G, Li P, Liu H, Xu HH (2012) A high-sensitive and fast-fabricated glucose biosensor based on Prussian blue/topological insulator Bi2Se3 hybrid film. Biosens Bioelectron 38:289–294

    Article  CAS  Google Scholar 

  16. Dong SY, Li N, Suo GC, Huang TL (2013) Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide. Anal Chem 85:11739–11746

    Article  CAS  Google Scholar 

  17. Luo QM, Wang HX, Xu XY, Li YT, Huang J (2011) Study on label-free immunosensor based on gold nanoparticles/chitosan incorporation carbon nanotubes composite membrane modified gold electrode. J Instrum Anal 30:780–783

    CAS  Google Scholar 

  18. Liu SQ, Dai ZH, Chen HY, Ju HX (2004) Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens Bioelectron 19:963–969

    Article  CAS  Google Scholar 

  19. Dai Z, Bai H, Hong M, Zhu YY, Bao JC, Shen J (2008) A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosens Bioelectron 23:1869–1873

    Article  CAS  Google Scholar 

  20. Feng JJ, Zhao G, Xu JJ, Chen HY (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem 342:280–286

    Article  CAS  Google Scholar 

  21. Koski KJ, Cha JJ, Reed BW, Wessells CD, Kong DS, Cui Y (2012) High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J Am Chem Soc 134:7584–7587

    Article  CAS  Google Scholar 

  22. Xu HM, Chen G, Jin RC, Chen DH, Pei J, Wang Y (2013) Electrical transport properties of microwave-synthesized Bi2Se3−xTex nanosheet. Cryst Eng Comm 15:5626–5632

    Article  CAS  Google Scholar 

  23. Xu HM, Chen G, Jin RC, Pei J, Wang Y, Chen DH (2013) Hierarchical Bi2Se3 microrods: microwave-assisted synthesis, growth mechanism and their related properties. Cryst Eng Comm 15:1618–1625

    Article  CAS  Google Scholar 

  24. Tang DP, Reinhard N, Dietmar K (2009) Flow-injection electrochemical immunosensor for the detection of human IgG based on glucose oxidase-derivated biomimetic interface. Biosens Bioelectron 24:2125–2130

    Article  CAS  Google Scholar 

  25. Zhong ZY, Li MX, Xiang DB, Dai N, Qing Y, Wang D, Tang DP (2009) Single amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels. Biosens Bioelectron 24:2246–2249

    Article  CAS  Google Scholar 

  26. Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoci A (2007) Double-codified gold nanolabels for enhance immunoanalysis. Anal Chem 79:5232–5240

    Article  CAS  Google Scholar 

  27. Manuel F, Cesar M, Guisán JM, Roberto FL (2005) Preparation of insert magnetic nano-particles for the directed immobilization of antibodies. Biosens Bioelectron 20:1380–1387

    Article  Google Scholar 

  28. Hu CY, Yang DP, Xu K, Gao HM, Wu BN, Cui DX (2012) Ag@BSA core/shell microspheres as an electrochemical interface for sensitive detection of urinary retinal-binding protein. Anal Chem 84:10324–10331

    Article  CAS  Google Scholar 

  29. Yu SJ, Wei Q, Du B, Wu D, Li H (2013) Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens Bioelectron 48:224–229

    Article  CAS  Google Scholar 

  30. Shang K, Zhu JY, Meng XM, Cheng ZQ, Ai SY (2012) Multifunctional Fe3O4 core/Ni-Al layered double hydroxides shell nanospheres as labels for ultrasensitive electrochemical immunoassay of subgroup J of avian leukosis virus. Biosens Bioelectron 37:107–111

    Article  CAS  Google Scholar 

  31. Hajar Z, Hedayatollah G, Khadijeh E, Majid Z (2012) Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe3O4 as a platform for electrochemical immunoassay. Anal Biochem 421:446–453

    Article  Google Scholar 

  32. Garralero V, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2008) Amperometric IgG immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as a transducer. Anal Lett 41:244–259

    Article  Google Scholar 

  33. Liu ZM, Yang HF, Li YF, Liu YL, Shen GL, Yu RQ (2006) Core–shell magnetic nanoparticles applied for immobilization of antibody on carbon paste electrode and amperometric immunosensing. Sensors Actuators B Chem 113:956–962

    Article  CAS  Google Scholar 

  34. Xu YY, Xia SH, Bian C, Chen SF (2006) A micro amperometric immunosensor for detection of human immunoglobulin. Sci China 49:397–408

    Article  Google Scholar 

  35. Tang D, Yuan R, Chai Y (2006) Ligand-functionalized core/shell Ag@Au nanoparticles label-free amperometric immun-biosensor. Biotechnol Bioeng 94:996–1004

    Article  CAS  Google Scholar 

  36. Zhang L, Liu Y, Chen T (2008) A mediatorless and label-free amperometric immunosensor for detection of h-IgG. Int J Biol Macromol 43:165–169

    Article  CAS  Google Scholar 

  37. Li J, Gao H (2008) A renewable potentiometric immunosensor based on Fe3O4 nanoparticles immobilized anti-IgG. Electroanalysis 20:881–887

    Article  CAS  Google Scholar 

  38. Wang Z, Yang Y, Li J, Gong J, Shen G, Yu R (2006) Organic-inorganic matrix for electrochemical immunoassay: detection of human IgG based on ZnO/chitosan composite. Talanta 69:686–690

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support from the National Natural Science Foundation of China (No. 21575111) and the Projects in the National Science & Technology (No. 2012BAC04B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheying Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Li, M., Wei, W. et al. An convenient strategy for IgG electrochemical immunosensor: the platform of topological insulator materials Bi2Se3 and ionic liquid. J Solid State Electrochem 21, 793–801 (2017). https://doi.org/10.1007/s10008-016-3420-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3420-3

Keywords

Navigation