Skip to main content
Log in

Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Vesicular polyaniline (VPANI) has been fabricated for the first time via a facile two-step method, which uses high-quality multilamellar vesicular SiO2 as hard templates. The graphene-wrapped VPANI (VPANI@RGO) composites were prepared by self-assembling graphene oxide onto VPANI and subsequently conducting the hydrothermal reduction process. The morphological characterization of the composites confirms the uniform wrapping of the graphene sheets on the VPANI. The structural characterization of the composites reveals a strong π–π electron and hydrogen bond interaction in the composites. The VPANI@RGO composites exhibit an excellent supercapacitor performance with an enhanced specific capacitance (573 F g−1) and a good cycling stability, which maintains its capacity of up to 85.7 % over 1000 cycles at 1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  2. Simon P, GoGotSi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Huang Y, Liang JJ, Chen YS (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  CAS  Google Scholar 

  4. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  5. Boutalebi SH, Chidembo AT, Salari M, Konstantinov K, Wexler D, Liu HK, Dou SX (2011) Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ Sci 4:1855–1865

    Article  Google Scholar 

  6. Yu GH, Hu LB, Liu N, Wang HL, Vosgueritchian M, Yang Y, Cui Y, Bao ZN (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrappin. Nano Lett 11:4438–4442

    Article  CAS  Google Scholar 

  7. Yang XH, Wang YG, Xiong HM, Xia YY (2007) Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. Electrochim Acta 53:752–757

    Article  CAS  Google Scholar 

  8. Wei D, Scherer MRJ, Bower C, Andrew P, Ryhänen T, Steiner U (2012) A nanostructured electrochromic supercapacitor. Nano Lett 12:1857–1862

    Article  CAS  Google Scholar 

  9. Cong HP, Ren XC, Wang P, Yu SH (2013) Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6:1185–1191

    Article  CAS  Google Scholar 

  10. Zhang K, Zhang LL, Zhao XS, Wu JS (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  11. Jiang Y, Hu CG, Cheng HH, Li CX, Xu T, Zhao Y, Shao HB, Qu LT (2016) Spontaneous, straightforward fabrication of partially reduced graphene oxide-polypyrrole composite films for versatile actuators. ACS Nano 10:4735–4741

    Article  CAS  Google Scholar 

  12. Yan WB, Li YL, Sun WH, Peng HT, Ye SY, Liu ZW, Bian ZQ, Huang CH (2014) High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization. RSC Adv 4:33039–33046

    Article  CAS  Google Scholar 

  13. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  14. Zhang HM, Zhao Q, Zhou SP, Liu NL, Wang XH, Li J, Wang FS (2011) Aqueous dispersed conducting polyaniline nanofibers: promising high specific capacity electrode materials for supercapacitor. J Power Sources 196:10484–10489

    Article  CAS  Google Scholar 

  15. Xiang JL, Drzal LT (2012) Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer 53:4202–4210

    Article  CAS  Google Scholar 

  16. Liu JL, Xue Y, Gao YH, Yu DS, Durstock M, Dai LM (2012) Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv Mater 24:2228–2233

    Article  CAS  Google Scholar 

  17. Xiao J, Mei DH, Li XL, Xu W, Wang D, Graff GL, Bennett WD, Nie ZM, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  18. Stoller MD, Park SG, Zhu YW, An JH, Ruof RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  19. Majumdar D, Baskey M, Saha SK (2011) Epitaxial growth of crystalline polyaniline on reduced graphene oxide. Macromol Rapid Commun 32:1277–1283

    Article  CAS  Google Scholar 

  20. Li M, Yin WC, Han XL, Chang XQ (2016) Hierarchical nanocomposites of polyaniline scales coated on graphene oxide sheets for enhanced supercapacitors. J Solid State Electrochem 20:1941–1948

    Article  CAS  Google Scholar 

  21. Male U, Uppugalla S, Srinivasan P (2015) Effect of reduced graphene oxide–silica composite in polyaniline: electrode material for high-performance supercapacitor. J Solid State Electrochem 19:3381–3388

    Article  CAS  Google Scholar 

  22. Tong ZQ, Yang YN, Wang JY, Zhao JP, Su BL, Li Y (2014) Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors. J Mater Chem A 2:4642–4651

    Article  CAS  Google Scholar 

  23. Sha CH, Lu B, Mao HY, Cheng JP, Pan XH, Lu JG, Ye ZZ (2016) 3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors. Carbon 99:26–34

    Article  CAS  Google Scholar 

  24. Lei ZB, Chen ZG, Zhao XS (2010) Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J Phys Chem C 114:19867–19874

    Article  CAS  Google Scholar 

  25. Yang LC, Wang SN, Mao JJ, Deng JW, Gao QS, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184

    Article  CAS  Google Scholar 

  26. Kulkarni SB, Patil UM, Shackery I, Sohn JS, Lee S, Park B, Jun S (2014) High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J Mater Chem A 2:4989–4998

    Article  CAS  Google Scholar 

  27. Sultana A, Alam MM, Garain S, Sinha TK, Middya TR, Mandal D (2015) An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler. ACS Appl Mater Interfaces 7:19091–19097

    Article  CAS  Google Scholar 

  28. Fan QH, Yang YB, Hao YK, Zhao XL, Feng YJ (2015) Preparation of three-dimensional PANI/GO for the separation of Hg(II) from aqueous solution. J Mol Liq 212:557–562

    Article  CAS  Google Scholar 

  29. Fan W, Zhang C, Tjiu WW, Pramoda KP, He CB, Liu TX (2013) Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl Mater Interfaces 5:3382–3391

    Article  CAS  Google Scholar 

  30. Liu XB, Wen N, Wang XL, Zheng YY (2015) A high-performance hierarchical graphene@polyaniline@graphene sandwich containing hollow structures for supercapacitor electrodes. ACS Sustain Chem Eng 3:475–482

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhou GW, Sun B, Zhao MN, Zhang JY, Chen FJ (2014) A cationic-cationic co-surfactant templating route for synthesizing well-defined multilamellar vesicular silica with an adjustable number of layers. Chem Commun 50:2907–2909

    Article  CAS  Google Scholar 

  32. Zhou GW, Chen YJ, Yang JH, Yang SH (2007) From cylindrical-channel mesoporous silica to vesicle-like silica with well-defined multilamella shells and large inter-shell mesopores. J Mater Chem 17:2839–2844

    Article  CAS  Google Scholar 

  33. Xing SX, Feng YH, Tay YY, Chen T, Xu J, Pan M, He JT, Hng HH, Yan QY, Chen HY (2010) Reducing the symmetry of bimetallic Au@Ag nanoparticles by exploiting eccentric polymer shells. J Am Chem Soc 132:9537–9539

    Article  CAS  Google Scholar 

  34. Hummers WS, Offema RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  35. Xiao H, Guo WJ, Sun B, Pei MS, Zhou GW (2016) Mesoporous TiO2 and Co-doped TiO2 nanotubes/reduced graphene oxide composites as electrodes for supercapacitors. Electrochim Acta 190:104–117

    Article  CAS  Google Scholar 

  36. Liu RR, Guo WJ, Sun B, Pang JL, Pei MS, Zhou GW (2015) Composites of rutile TiO2 nanorods loaded on graphene oxide nanosheet with enhanced electrochemical performance. Electrochim Acta 156:274–282

    Article  CAS  Google Scholar 

  37. Wang B, Liu JZ, Zhao Y, Li Y, Xian W, Amjadipour M, MacLeod J, Motta N (2016) Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance. ACS Appl Mater Interfaces 8:22316–22323

    Article  CAS  Google Scholar 

  38. Zhou GW, Chen YJ, Yang SH (2009) Comparative studies on catalytic properties of immobilized Candida rugosa lipase in ordered mesoporous rod-like silica and vesicle-like silica. Micropor Mesopor Mater 5:223–229

    Article  Google Scholar 

  39. Das D, Choudhury P, Bortahkur L, Gogoi B, Buragohain AK, Dolui SK (2015) Synthesis and characterization of SiO2/polyaniline/Ag core–shell particles and studies of their electrical and hemolytic properties: multifunctional core–shell particles. RSC Adv 5:2360–2367

    Article  CAS  Google Scholar 

  40. Gao TT, Ng SW, Liu XQ, Niu LY, Xie Z, Guo RS, Chen CJ, Zhou XC, Ma J, Jin W, Chui YS, Zhang WJ, Zhou F, Zheng ZJ (2014) Transferable, transparent and functional polymer@graphene 2D objects. NPG Asia Mater 6:e130

    Article  CAS  Google Scholar 

  41. Wen T, Fan QH, Tan XL, Chen YT, Chen CL, Xu AW, Wang XK (2016) A core–shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(VI) and humic acid removal. Polym Chem 7:785–794

    Article  CAS  Google Scholar 

  42. Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42:380–384

    Article  CAS  Google Scholar 

  43. Liu ZH, Wang ZM, Yang XY, Ooi K (2002) Intercalation of organic ammonium ions into layered graphite oxide. Langmuir 18:4926–4932

    Article  CAS  Google Scholar 

  44. Kumar NA, Choi HJ, Shin YR, Chang DW, Dai LM, Baek JB (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6:1715–1723

    Article  CAS  Google Scholar 

  45. Baibarac M, Baltog I, Lefrant S, Mevellec JY, Chauvet O (2003) Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem Mater 15:4149–4156

    Article  CAS  Google Scholar 

  46. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170

    Article  CAS  Google Scholar 

  47. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, Zhang ML, Qian WZ, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728

    Article  CAS  Google Scholar 

  48. Li J, Xie HQ, Li Y, Liu J, Li ZX (2011) Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J Power Sources 196:10775–10781

    Article  CAS  Google Scholar 

  49. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  50. Li LX, Song HH, Zhang QC, Yao JY, Chen XH (2009) Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J Power Sources 187:268–274

    Article  CAS  Google Scholar 

  51. Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  52. Liu MK, Miao YE, Zhang C, Tjiu WW, Yang ZB, Peng HS, Liu TX (2013) Hierarchical composites of polyaniline–grapheme nanoribbons–carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nanoscale 5:7312–7320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51372124, 51572134, 51503108), the Natural Science Foundation of Shandong Province (Grant No. BS2015CL018), and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Zhou.

Electronic supplementary material

ESM 1

(DOCX 5325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Gao, T., Li, Y. et al. Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor. J Solid State Electrochem 21, 705–714 (2017). https://doi.org/10.1007/s10008-016-3410-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3410-5

Keywords

Navigation