Skip to main content
Log in

Improvement of the electrochemical properties of a LiNi0.5Mn1.5O4 cathode material formed by a new solid-state synthesis method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In order to avoid the shortcomings of large particle size and poor uniformity of material synthesized by the traditional solid-state method, this paper utilizes a simple improvement of calcination process (i.e., calcination–milling–recalcination) based on the traditional solid-state synthesis to successfully prepare a large number of well-distributed, micrometer-sized, spherical secondary LiNi0.5Mn1.5O4 particles. Each particle is composed of nano- and/or sub-micrometer-sized grains. Results of the electrochemical performance tests show that the material exhibits a remarkable cycle performance and rate capability compared with that obtained from traditional synthesis method; the spherical LiNi0.5Mn1.5O4 particles can deliver a large capacity of 135.8 mAh g−1 at a 1 C discharge rate with a high retention of 77 % after 741 cycles and a good capacity of 105.9 mAh g−1 at 10 C. Cyclic voltammetry measurements confirm that the significantly improved electrochemical properties are due to enhanced electronic conductivity and lithium-ion diffusion coefficient resulting from the optimized morphology and particle size. This improved method is more suitable for mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Song J, Yang J (2014) A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Renew Sust Energ Rev 37:627–633

    Article  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 81–82:90–94

    Article  Google Scholar 

  4. Liu D, Zhu W, Trottier J, Gagnon C, Barray F, Guerfi A, Mauger A, Groult H, Julien CM, Goodenoughd JB, Zaghib K (2014) Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv 4:154–167

    Article  CAS  Google Scholar 

  5. Julien CM, Mauger A (2013) Review of 5 V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988

    Article  CAS  Google Scholar 

  6. Zhong QM, Bonakdarpour A, Zhang MJ, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2−xO4. J Electrochem Soc 144:205–213

    Article  CAS  Google Scholar 

  7. Cao A, Manthiram A (2012) Shape-controlled synthesis of high tap density cathode oxides for lithium ion batteries. Phys Chem Chem Phys 14:6724–6728

    Article  CAS  Google Scholar 

  8. Zhu HL, Chen ZY, Ji S, Linkov V (2008) Influence of different morphologies on electrochemical performance of spinel LiMn2O4. Solid State Ionics 179:1788–1793

    Article  CAS  Google Scholar 

  9. Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19:1497–1514

    Article  CAS  Google Scholar 

  10. Zhang XL, Cheng FY, Yang JG, Chen J (2013) LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13:2822–2825

    Article  CAS  Google Scholar 

  11. Song MK, Park SJ, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mat Sci and Eng R 72:203–252

    Article  Google Scholar 

  12. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  CAS  Google Scholar 

  13. Wang HE, Qian D, ZG L, Li YK (2012) Synthesis and electrochemical properties of LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials. J Alloys Compd 517:186–191

    Article  CAS  Google Scholar 

  14. Zhu HL, Zhu ZY, Ji S, Linkov V (2008) Influence of different morphologies on electrochemical performance of spinel LiMn2O4. Solid State Ionics 179:1788–1793

    Article  CAS  Google Scholar 

  15. Huang B, Zheng XD, Jia DM, Lu M (2010) Design and synthesis of high-rate micron-sized, spherical LiFePO4/C composites containing clusters of nano/microspheres. Electrochim Acta 55:1227–1231

    Article  CAS  Google Scholar 

  16. Park SH, Oh SW, Myung ST, Kang YC, Sun YK (2005) Effects of synthesis condition on LiNi1/2Mn3/2O4 cathode material prepared by ultrasonic spray pyrolysis method. Solid State Ionics 176:481–486

    Article  CAS  Google Scholar 

  17. Cao SS, Huang JF, Ouyang HB, Cao LY, Li JY, Wu JP (2014) A simple method to prepare NH4V3O8 nanorods as cathode material for Li-ion batteries. Mater Lett 126:20–23

    Article  CAS  Google Scholar 

  18. Xia L, Wang H, Lu Z, Yang S, Ma R, Deng J, Chung CY (2012) Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. J Power Sources 198:251–257

    Article  Google Scholar 

  19. Habtom DA, Matthew RR, Tai CW, Reza Y, Mario V (2014) Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance. Nanoscale 6:8804–8813

    Article  Google Scholar 

  20. Zhu Z, Yan H, Zhang D, Li W, Lu Q (2013) Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery. J Power Sources 224:13–19

    Article  CAS  Google Scholar 

  21. Lin C, Du J, Su CH, Chen J (2010) LiNi0.5Mn1.5O4 cathode material by low-temperature solid-state method with excellent cycleability in lithium ion battery. Mater Lett 64:2328–2330

    Article  CAS  Google Scholar 

  22. Chen Z, Zhu H, Ji S, Linkov V, Zhang JL, Zhu W (2009) Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction. J Power Sources 189:507–510

    Article  CAS  Google Scholar 

  23. Yang K, Su J, Zhang L, Long Y, Lv X, Wen Y (2012) Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries. Particuology 10:765–770

    Article  CAS  Google Scholar 

  24. Sun Q, Li XH, Wang ZX, Ji Y (2009) Synthesis and electrochemical performance of 5 V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans Nonferrous Met Soc China 19:176–181

    Article  CAS  Google Scholar 

  25. Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Cras FL, Jouanneau S, Martinet S (2009) High voltage spinel oxides for Li-ion batteries: from the material research to the application. J Power Sources 189:344–352

    Article  CAS  Google Scholar 

  26. Yang SF, Chen J, Liu YJ, Yi BL (2014) Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal–organic coordination-polymers as precursors. J Mater Chem A2:9322–9330

    Article  Google Scholar 

  27. Huang B, Zheng XD, Fan XP, Song GH, Lu M (2011) Enhanced rate performance of nano–micro structured LiFePO4/C by improved process for high-power Li-ion batteries. Electrochim Acta 56:4865–4868

    Article  CAS  Google Scholar 

  28. Lee HW, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries. J Power Sources 196:10712–10716

    Article  CAS  Google Scholar 

  29. Thangadurai V, Weppner W (2005) Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. J Power Sources 142:339–344

    Article  CAS  Google Scholar 

  30. Yang TY, Zhang NQ, Lang Y, Sun KN (2011) Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Electrochim Acta 56:4058–4064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the Project of Science and Technology Program of Jiangsu Province (BY2014109, BY2015058-06), the Natural Science Fund of Yancheng Teachers University (11YCKL012), and the constructing project of tidal flat living resources and environmental protection in jiangsu province (JLCBE10013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changmei Jiao or Guangchuan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Meng, T., Lu, H. et al. Improvement of the electrochemical properties of a LiNi0.5Mn1.5O4 cathode material formed by a new solid-state synthesis method. J Solid State Electrochem 21, 495–501 (2017). https://doi.org/10.1007/s10008-016-3393-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3393-2

Keywords

Navigation