Skip to main content
Log in

Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A porous, hollow, microspherical composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) was prepared using hollow MnO2 as the sacrificial template. The resulting composite was found to be mesoporous; its pores were about 20 nm in diameter. It also delivered a reversible discharge capacity value of 220 mAh g−1 at a specific current of 25 mA g−1 with excellent cycling stability and a high rate capability. A discharge capacity of 100 mAh g−1 was obtained for this composite at a specific current of 1000 mA g−1. The high rate capability of this hollow microspherical composite can be attributed to its porous nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3a–c
Fig. 4a–d
Fig. 5a–d
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  2. Rossouw MH, Thackeray MM (1991) Mater Res Bull 26:463–473

    Article  CAS  Google Scholar 

  3. Kalyani P, Chitra S, Mohan T, Gopukumar S (1999) J Power Sources 80:103–106

    Article  CAS  Google Scholar 

  4. Johnson CS, Korte SD, Vaughey JT, Thackeray MM, Bofinger TE, Horn YS, Hackney SA (1999) J Power Sources 81–82:491–495

    Article  Google Scholar 

  5. Tang W, Kanoh H, Ooi K, Wang Y (2000) J Mater Sci Lett 19:1361–1363

    Article  CAS  Google Scholar 

  6. Robertson AD, Bruce PG (2002) Chem Commun 23:2790–2791

    Article  Google Scholar 

  7. Armstrong AR, Robertson AD, Bruce PG (2005) J Power Sources 146:275–280

    Article  CAS  Google Scholar 

  8. Pasero D, McLaren V, DeSouza S, West AR (2005) Chem Mater 17:345–348

    Article  CAS  Google Scholar 

  9. Park SH, Sato Y, Kim JK, Lee YS (2007) Mater Chem Phys 102:225–230

    Article  CAS  Google Scholar 

  10. Yu DYW, Yanagida K, Kato Y, Nakamura H (2009) J Electrochem Soc 156:A417–A424

    Article  CAS  Google Scholar 

  11. Lim J, Moon J, Gim J, Kim S, Kim K, Song J, Kang J, Im WB, Kim J (2012) J Mater Chem 22:11772–11777

    Article  CAS  Google Scholar 

  12. Kim JS, Johnson CS, Vaughey JT, Thackeray MM, Hackney SA, Yoon W, Grey CP (2004) Chem Mater 16:1996–2006

    Article  CAS  Google Scholar 

  13. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) J Mater Chem 17:2069–2077

    Article  CAS  Google Scholar 

  14. Lim JH, Bang H, Lee KS, Amine K, Sun YK (2009) J Power Sources 189:571–575

    Article  CAS  Google Scholar 

  15. Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) J Electrochem Soc 157:A1121–A1130

    Article  CAS  Google Scholar 

  16. Amalraj F, Sharon D, Talianker M, Julien CM, Burlaka L, Lavi R, Zhecheva E, Markovsky B, Zinigrad E, Kovacheva D, Stoyanova R, Aurbach D (2013) Electrochim Acta 97:259–270

    Article  CAS  Google Scholar 

  17. Yang XY, Li Y, Lemaire A, Yu JG, Su BL (2009) Pure Appl Chem 81:2265–2307

    Article  CAS  Google Scholar 

  18. Remith P, Kalaiselvi N (2014) Nanoscale 6:14724–14732

    Article  CAS  Google Scholar 

  19. Zhu Z, Zhu L (2014) J Power Sources 256:178–182

    Article  CAS  Google Scholar 

  20. Vu A, Qian Y, Stein A (2012) Adv Energy Mater 2:1056–1085

    Article  CAS  Google Scholar 

  21. Wei C, Deng J, Xi L, Zhou H, Wang Z, Chung CY, Yao Q, Rao G (2013) Int J Electrochem Sci 8:6775–6783

    CAS  Google Scholar 

  22. Jiang Y, Yang Z, Luo W, Hu X, Huang Y (2013) Phys Chem Chem Phys 15:2954–2960

    Article  CAS  Google Scholar 

  23. Zhou L, Zhao D, Lou XW (2012) Angew Chem Int Ed 51:239–241

    Article  CAS  Google Scholar 

  24. Strobel P, Andron BL (1988) J Solid State Chem 75:90–98

    Article  CAS  Google Scholar 

  25. Ma D, Zhang P, Li Y, Ren X (2015) Sci Rep 5:11257–11265

    Article  Google Scholar 

  26. Yan B, Liu J, Song B, Xiao P, Lu L (2013) Sci Rep 3:3332–3337

    Google Scholar 

  27. Abouimrane A, Compton OC, Deng H, Belharouak I, Dikin DA, Nguyen ST, Amine K (2011) Electrochem Solid State Lett 14:A126–A129

    Article  CAS  Google Scholar 

  28. Zhang J, Lu Q, Fang J, Wang J, Yang J, NuLi Y (2014) ACS Appl Mater Interfaces 6:17965–17973

    Article  CAS  Google Scholar 

  29. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  30. Shaju KM, Rao GVS, Chowdari BVR (2002) Electrochim Acta 48:145–151

    Article  CAS  Google Scholar 

  31. Reed J, Ceder G (2002) Electrochem Solid State Lett 5:A145–A148

    Article  CAS  Google Scholar 

  32. Wang J, Qiu B, Cao H, Xia Y, Liu Z (2012) J Power Sources 218:128–133

    Article  CAS  Google Scholar 

  33. Kang SH, Thackeray MM (2009) Electrochem Commun 11:748–751

    Article  CAS  Google Scholar 

  34. He W, Qian J, Cao Y, Ai X, Yang H (2012) RSC Adv 2:3423–3429

    Article  CAS  Google Scholar 

  35. Gallagher KG, Croy JR, Balasubramanian M, Bettge M, Abraham DP, Burrell AK, Thackeray MM (2013) Electrochem Commun 33:96–98

    Article  CAS  Google Scholar 

  36. Croy JR, Gallagher KG, Balasubramanian M, Chen Z, Ren Y, Kim D, Kang SH, Dees DW, Thackeray MM (2013) J Phys Chem C 117:6525–6536

    Article  CAS  Google Scholar 

  37. Toprakci O, Toprakci HAK, Li Y, Ji L, Xue L, Lee H, Zhang S, Zhang X (2013) J Power Sources 241:522–528

    Article  CAS  Google Scholar 

  38. Liu J, Chen L, Hou M, Wang F, Che R, Xia Y (2012) J Mater Chem 22:25380–25387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), Government of India, for funding this work as part of the India–Israel project. The authors also acknowledge the Saha Institute for Nuclear Physics, India, for facilitating the synchrotron experiments at the Indian Beamline (BL-18B), KEK Photon Factory (KEK-PF), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nookala Munichandraiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraisamy, S., Penki, T.R., Kishore, B. et al. Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion batteries. J Solid State Electrochem 21, 437–445 (2017). https://doi.org/10.1007/s10008-016-3380-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3380-7

Keywords

Navigation