Properties and structure of heterogeneous ion-exchange membranes after exposure to chemical agents

Abstract

This work deals with resistance of ion-exchange membranes in selected chemical solutions. Specimens of heterogeneous membranes were analyzed after exposure to chemically aggressive agents such as nitric acid, sodium hydroxide, etc. The analyses were carried out after period up to 6 months. The chemical resistance was evaluated from the mechanical and electrochemical property changes’ point of view before and after exposure. The tested materials were not only the membranes themselves but also their individual components, i.e., ion-exchange resins from various manufacturers and polyester reinforcing fabrics. The results show that exposure to NaOH solution has the most damaging effect especially on reinforcing fabric and a membrane as whole due mainly to dimension changes. The same stands for electrochemical resistance of the membrane and permselectivity. Ion-exchange capacity remains almost the same after exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Galama AH, Hoog NA, Yntema DR (2016) Method for determining ion exchange membrane resistance for electrodialysis systems. Desalination 380:1–11

    CAS  Article  Google Scholar 

  2. 2.

    Tanaka Y, Uchino H, Matsuda S, Sato Y (2015) Batch ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing process. Experiment and simulation. Separ Purif Technol 156:276–287

    CAS  Article  Google Scholar 

  3. 3.

    Allioux F-M, He L, She F, Hodgson PH, Kong L, Dumée LF (2015) Investigation of hybrid ion-exchange membranes reinforced with non-woven metal meshes for electro-dialysis applications. Separ Purif Technol 147:353–363

    CAS  Article  Google Scholar 

  4. 4.

    Alvarado L, Chen A (2014) Electrodeionization: principles, strategies and applications. Electrochim Acta 132:583–597

    CAS  Article  Google Scholar 

  5. 5.

    Lu H, Wang Y, Wang J (2015) Recovery of Ni2 and pure water from electroplating rinse wastewater by an integrated two-stage electrodeionization process. J Clean Prod 92:257–266

    CAS  Article  Google Scholar 

  6. 6.

    Sun S, Shao Z, Yu H, Li G, Yi B (2014) Investigations on degradation of the long-term proton exchange membrane water electrolysis stack. J Power Sources 267:515–520

    CAS  Article  Google Scholar 

  7. 7.

    Zeng L, Zhao TS (2015) Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis. Nano Energy 11:110–118

    CAS  Article  Google Scholar 

  8. 8.

    Menictas C, Skyllas-Kazacos M (2011) Performance of vanadium-oxygen redox fuel cell. J Appl Electrochem 41:1223–1232

    CAS  Article  Google Scholar 

  9. 9.

    Strathmann H, Grabowski A, Eigenberger G (2013) Ion-exchange membranes in the chemical process industry. Ind Eng Chem Res 52:10364–10379

    CAS  Article  Google Scholar 

  10. 10.

    Liao JB, Lu MZ, Chu YQ, Wang JL (2015) Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries. J Power Sources 282:241–247

    CAS  Article  Google Scholar 

  11. 11.

    Kim D-K, Duan C, Chen Y-F, Majumdar A (2010) Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid Nanofluid 9:1215–1224

    CAS  Article  Google Scholar 

  12. 12.

    Veerman J, Saakes M, Metz SJ, Harmsen GJ (2010) Reverse electrodialysis: evaluation of suitable electrode systems. J Appl Electrochem 40:1461–1474

    CAS  Article  Google Scholar 

  13. 13.

    Kwon K, Park BH, Kim DH, Kim D (2015) Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery. Energy Convers Manag 103:104–110

    CAS  Article  Google Scholar 

  14. 14.

    Tedesco M, Scalici C, Vaccari D, Cipollina A, Tamburini A, Micale G (2015) Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. J Membr Sci 500:33–45

    Article  Google Scholar 

  15. 15.

    Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130

    CAS  Article  Google Scholar 

  16. 16.

    Silva V, Poiesz E, van der Heijden P (2013) Industrial wastewater desalination using electrodialysis: evaluation and plant design. J Appl Electrochem 43:1057–1067

    CAS  Article  Google Scholar 

  17. 17.

    Guo H, You F, Yu S, Li L, Zhao D (2015) Mechanisms of chemical cleaning of ion exchange membranes: a case study of plant-scale electrodialysis for oily wastewater treatment. J Membr Sci 496:310–317

    CAS  Article  Google Scholar 

  18. 18.

    Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29

    CAS  Article  Google Scholar 

  19. 19.

    Han L, Galier S, Roux-de Balmann H (2015) Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution. Desalination 373:38–46

    CAS  Article  Google Scholar 

  20. 20.

    Chekioua A, Delimi R (2015) Purification of H2SO4 of pickling bath contaminated by Fe(II) ions using electrodialysis process. Energy Procedia 74:1418–1433

    CAS  Article  Google Scholar 

  21. 21.

    Malek P, Ortiz JM, Schulte-Herbrüggen HMA (2016) Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy. Desalination 377:54–64

    CAS  Article  Google Scholar 

  22. 22.

    Jones RJ, Massanet-Nicolau J, Guwy A, Premier GC, Dinsdale RM, Reilly M (2015) Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Bioresour Technol 189:279–284

    CAS  Article  Google Scholar 

  23. 23.

    He R, Girgih AT, Rozoy E, Bazinet L, Ju X-R, Aluko RE (2016) Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chem 197:1008–1014

    CAS  Article  Google Scholar 

  24. 24.

    Yaroslavtsev AB, Nikonenko VV (2009) Ion-exchange membrane materials: properties, modification, and practical application. Nanotechnol Russ 4:137–159

    Article  Google Scholar 

  25. 25.

    Vasil’eva VI, Akberova EM, Demina OA, Kononenko NA, Malykhin MD (2015) Effect of thermochemical treatment on conductivity and mechanism of current flow in MK-40 sulfocationite membrane. Russ J Electrochem 51:627–637

    Article  Google Scholar 

  26. 26.

    Berezina NP, Kononenko NA, Dyomina OA, Gnusin NP (2008) Characterization of ion-exchange membrane materials: properties vs structure. Adv Colloid Interf Sci 139:3–28

    CAS  Article  Google Scholar 

  27. 27.

    Hong JG, Zhang B, Glabman S, Uzal N, Dou X, Zhang H, Wei X, Chen Y (2015) Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review. J Membr Sci 486:71–88

    CAS  Article  Google Scholar 

  28. 28.

    Vasil’eva VI, Pismenskaya ND, Akberova EM, Nebavskaya KA (2014) Effect of thermochemical treatment on the surface morphology and hydrophobicity of heterogeneous ion-exchange membranes. Russ J Phys Chem A 88:1293–1299

    Article  Google Scholar 

  29. 29.

    Polyanskii NG, Tulupov TP (1971) Thermal stability of cation-exchange resins. Russ Chem Rev 40:1030–1046

    Article  Google Scholar 

  30. 30.

    Lee H-J, Park J-S, Kang M-S, Moon S-H (2003) Effects of silica sol on ion exchange membranes: electrochemical characterization of anion exchange membranes in electrodialysis of silica sol containing-solutions. Korean J Chem Eng 20:889–895

    CAS  Article  Google Scholar 

  31. 31.

    Demina OA, Demin AV, Gnusin NP, Zabolotskii VI (2010) Effect of an aprotic solvent on the properties and structure of ion-exchange membranes. Polym Sci Ser A 52:1270–1282

    Article  Google Scholar 

  32. 32.

    Kim S, Tighe TB, Schwenzer B, Yan J, Zhang J, Liu J, Yang Z, Hickner MA (2011) Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. J Appl Electrochem 41:1201–1213

    CAS  Article  Google Scholar 

  33. 33.

    Shishkina SV, Zhelonkina EA, Kononova TV (2013) Effect of chromium compounds on the properties of ion-exchange membranes. Pet Chem 53:494–499

    CAS  Article  Google Scholar 

  34. 34.

    Vasil’eva VI, Akberova EM, Shaposhnik VA, Malykhin MD (2014) Electrochemical properties and structure of ion-exchange membranes upon thermochemical treatment. Russ J Electrochem 50:789–797

    Article  Google Scholar 

  35. 35.

    Zabolotskii VI, Chermit RK, Sharafan MV (2014) Mass transfer mechanism and chemical stability of strongly basic anion-exchange membranes under overlimiting current conditions. Russ J Electrochem 50:38–45

    CAS  Article  Google Scholar 

  36. 36.

    Pupkevich V, Glibin V, Karamanev D (2007) The effect of ferric ions on the conductivity of various types of polymer cation exchange membranes. J Solid State Electrochem 11:1429–1434

    CAS  Article  Google Scholar 

  37. 37.

    Mittal VO, Russell Kunz H, Fenton JM (2006) Is H2O2 involved in the membrane degradation mechanism in PEMFC? Electrochem Solid-State Lett 9:299–302

    Article  Google Scholar 

  38. 38.

    Rodgers MP, Bonville LJ, Kunz HR, Slattery DK, Fenton JM (2012) Fuel cell Perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime. Chem Rev 112:6075–6103

    CAS  Article  Google Scholar 

  39. 39.

    Collier A, Wang H, Ziyuan X, Zhang J, Wilkinson DP (2006) Degradation of polymer electrolyte membranes. Int J Hydrog Energy 31:1838–1854

    CAS  Article  Google Scholar 

  40. 40.

    Macauley N, Alavijeh AS, Watson M, Kolodziej J, Lauritzen M, Knights S, Wang G, Kjeang E (2014) Accelerated membrane durability testing of heavy duty fuel cells. J Electrochem Soc 162:F98–F107

    Article  Google Scholar 

  41. 41.

    Chi WS, Patel R, Hwang H, Shul YG, Kim JH (2012) Preparation of poly(vinylidene fluoride) nanocomposite membranes based on graft polymerization and sol–gel process for polymer electrolyte membrane fuel cells. J Solid State Electrochem 16:1405–1414

    CAS  Article  Google Scholar 

  42. 42.

    Wang L, Yi BL, Zhang HM, Xing DM (2008) Characteristics of Polyethersulfone/sulfonated polyimide blend membrane for proton exchange membrane fuel cell. J Phys Chem B 112:4270–4275

    CAS  Article  Google Scholar 

  43. 43.

    de Souza A, Gonzalez ER (2003) Influence of the operational parameters on the performance of polymer electrolyte membrane fuel cells with different flow fields. J Solid State Electrochem 7:651–657

    Article  Google Scholar 

  44. 44.

    Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuel 28:7303–7330

    CAS  Article  Google Scholar 

  45. 45.

    Martemianov S, Raileanu Ilie VA, Coutanceau C (2014) Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly. J Solid State Electrochem 18:1261–1269

    CAS  Article  Google Scholar 

  46. 46.

    Appleby AJ (2009) A model for high-surface-area porous Nafion™-bonded cathodes operating in hydrogen–oxygen proton exchange membrane fuel cells (PEMFCs). J Solid State Electrochem 13:991–997

    CAS  Article  Google Scholar 

  47. 47.

    Limpattayanate S, Hunsom M (2013) Effect of supports on activity and stability of Pt–Pd catalysts for oxygen reduction reaction in proton exchange membrane fuel cells. J Solid State Electrochem 17:1221–1231

    CAS  Article  Google Scholar 

  48. 48.

    Quiroga MA, Malek K, Franco AA (2015) A Multiparadigm modeling investigation of membrane chemical degradation in PEM fuel cells. J Electrochem Soc 163:F59–F70

    Article  Google Scholar 

  49. 49.

    Stránská E, Neděla D, Válek R, Křivčík J (2015) Optimization of preparation of heterogeneous cation exchange membranes using different particle size distributions of ion exchange resins. Chem List 109:701–709 In Czech

    Google Scholar 

  50. 50.

    Wysocka-Żołopa M, Winkler K, Gadde S, D’Souza F (2012) Two-component polymer films of palladium and fullerene with covalently linked crown ether voids: effect of cation binding on the redox behavior. J Solid State Electrochem 16:65–74

    Article  Google Scholar 

  51. 51.

    Inzelt G (2011) Milestones of the development of kinetics of electrode reactions. J Solid State Electrochem 15:1373–1389

    CAS  Article  Google Scholar 

  52. 52.

    Salehi E, Hosseini SM, Ansari S, Hamidi A (2016) Surface modification of sulfonated polyvinylchloride cation-exchange membranes by using chitosan polymer containing Fe3O4 nanoparticles. J Solid State Electrochem 20:371–377

    CAS  Article  Google Scholar 

  53. 53.

    Dow Chemical Company (2000) DOWEX ion exchange resins, fundamentals of ion exchange. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0032/0901b803800326ca.pdf?filepath=liquidseps/pdfs/noreg/177-01837.pdf&fromPage=GetDoc

  54. 54.

    Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Membr Sci 112:161–170

    CAS  Article  Google Scholar 

  55. 55.

    McMurry J (1999) Organic chemistry, 5th edn. Brooks/Cole, Pacific Grove

    Google Scholar 

  56. 56.

    Carey FA (2000) Organic chemistry, 4th edn. McGraw-Hill, Boston

    Google Scholar 

  57. 57.

    Ghalloussi R, Garcia-Vasquez W, Bellakhal N, Larchet C, Dammak L, Huguet P, Grande D (2011) Ageing of ion-exchange membranes used in electrodialysis: investigation of static parameters, electrolyte permeability and tensile strength. Sep Purif Technol 80:270–275

    CAS  Article  Google Scholar 

  58. 58.

    Ghalloussi R, Garcia-Vasquez W, Chaabane L, Dammak L, Larchet C, Deabate SV, Nevakshenova E, Nikonenko V, Grande D (2013) Ageing of ion-exchange membranes in electrodialysis: a structural and physicochemical investigation. J Membr Sci 436:68–78

    CAS  Article  Google Scholar 

  59. 59.

    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73:429–442

    CAS  Article  Google Scholar 

  60. 60.

    Mashiur R (2012) Degradation of polyesters in medical applications. Polyester, 1st edn. InTechOpen, Rijeka

  61. 61.

    Smith M, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. John Wiley, Hoboken, N.J

    Google Scholar 

  62. 62.

    Mleziva J, Šňupárek J (2000) Polymers: production, structure, properties and utilization, 2nd edn. Sobotáles, Prague In Czech

    Google Scholar 

  63. 63.

    Strain IN, Wu Q, Pourrahimi AM, Hedenqvist MS, Olsson RT, Andersson RL (2015) Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J Mater Chem A 3:1632–1640

    CAS  Article  Google Scholar 

  64. 64.

    Jeong S, Lee J, Woo S, Seo J, Min B (2015) Characterization of anion exchange membrane containing epoxy ring and C–Cl bond Quaternized by various amine groups for application in fuel cells. Energies 8:7084–7099

    CAS  Article  Google Scholar 

  65. 65.

    Djebara M, Stoquert JP, Abdesselam M, Muller D, Chami AC (2012) FTIR analysis of polyethylene terephthalate irradiated by MeV He. Nucl Instrum Methods Phys Res, Sect B 274:70–77

    CAS  Article  Google Scholar 

  66. 66.

    Chen Z, Hay JN, Jenkins MJ (2013) The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy. Thermochim Acta 552:123–130

    CAS  Article  Google Scholar 

  67. 67.

    Vijayakumar S, Rajakumar PR (2013) Infrared spectral analysis of waste pet samples. Int Lett Chem, Phys Astron 4:58–65

    Article  Google Scholar 

  68. 68.

    Hunter L, White JW, Cohen PH, Biermann P (2000) A materials aging problem in theory and practice. John Hopkins Appl Tech Dig 21:575–581

    CAS  Google Scholar 

  69. 69.

    Szabó-Réthy E, Vancsó-Szmercsányi I (1972) Investigations on acid hydrolysis of polyesters. Chem zvesti 26:390–396

    Google Scholar 

  70. 70.

    Burgoyne CJ, Merii AL (2007) On the hydrolytic stability of polyester yarns. J Mater Sci 42:2867–2878

    CAS  Article  Google Scholar 

  71. 71.

    Dammak L, Larchet C, Grande D (2009) Ageing of ion-exchange membranes in oxidant solutions. Sep Purif Technol 69:43–47

    CAS  Article  Google Scholar 

  72. 72.

    Garcia-Vasquez W, Ghalloussi R, Dammak L, Larchet C, Nikonenko V, Grande D (2014) Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite. J Membr Sci 452:104–116

    CAS  Article  Google Scholar 

  73. 73.

    Garcia-Vasquez W, Dammak L, Larchet C, Nikonenko V, Pismenskaya N, Grande D (2013) Evolution of anion-exchange membrane properties in a full scale electrodialysis stack. J Membr Sci 446:255–265

    CAS  Article  Google Scholar 

  74. 74.

    Vasil’eva VI, Akberova EM, Zhiltsova AV, Chernykh EI, Sirota EA, Agapov BL (2013) SEM diagnostics of the surface of MK-40 and MA-40 heterogeneous ion-exchange membranes in the swollen state after thermal treatment. J Surf Invest X-ray, Synchrotron and Neutron Tech 7:833–840

    Article  Google Scholar 

  75. 75.

    Garcia-Vasquez W, Dammak L, Larchet C, Nikonenko V, Grande D (2016) Effects of acid–base cleaning procedure on structure and properties of anion-exchange membranes used in electrodialysis. J Membr Sci 507:12–23

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work was carried out within the framework of the project no. LO1418 “Progressive Development of Membrane Innovation Centre” supported by the program NPU I Ministry of Education Youth and Sports of the Czech Republic, using the infrastructure of the Membrane Innovation Centre.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eliška Stránská.

Electronic supplementary material

Fig. S1

(DOCX 428 kb)

Fig. S2

(DOCX 414 kb)

Fig. S3

(DOCX 352 kb)

Fig. S4

(DOCX 1045 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulejko, P., Stránská, E. & Weinertová, K. Properties and structure of heterogeneous ion-exchange membranes after exposure to chemical agents. J Solid State Electrochem 21, 111–124 (2017). https://doi.org/10.1007/s10008-016-3341-1

Download citation

Keywords

  • Ion-exchange membrane
  • Electrochemical properties
  • Mechanical properties
  • Chemical agents
  • Exposure