Skip to main content
Log in

Enhanced electrochemical properties of Li2ZnTi3O8/C nanocomposite synthesized with phenolic resin as carbon source

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li2ZnTi3O8/C nanocomposite has been synthesized using phenolic resin as carbon source in this work. The structure, morphology, and electrochemical properties of the as-prepared Li2ZnTi3O8 samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy (RS), galvanostatic charge–discharge, and AC impedance spectroscopy. SEM images show that Li2ZnTi3O8/C was agglomerated with a primary particle size of ca. 40 nm. TEM images reveal that a homogeneous carbon layer (ca. 5 nm) formed on the surface of Li2ZnTi3O8 particles which is favorable to improve the electronic conductivity and inhibit the growth of Li2ZnTi3O8 during annealing process. The as-prepared Li2ZnTi3O8/C composite with 6.0 wt.% carbon exhibited a high initial discharge capacity of 425 and 159 mAh g−1 at 0.05 and 5 A g−1, respectively. At a high current density of 1 A g−1, 95.5 % of its initial value is obtained after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shi Y, Wen L, Li F, Cheng HM (2011) J Power Sources 196:8610–8617

    Article  CAS  Google Scholar 

  2. Wu FX, Wang ZX, Li XH, Wu L, Wang XJ, Zhang XP, Wang ZG, Xiong XH, Guo HJ (2011) J Alloys Compd 509:596–601

    Article  CAS  Google Scholar 

  3. Wang J, Zhao HL, Yang Q, Wang CM, Lv PP, Xia Q (2013) J Power Sources 222:196–201

    Article  CAS  Google Scholar 

  4. Zhang HQ, Deng QJ, Mou CX, Huang ZL, Wang Y, Zhou AJ, Li JZ (2013) J Power Sources 239:538–545

    Article  CAS  Google Scholar 

  5. Yi TF, Chen B, Shen HY, Zhu RS, Zhou AN, Qiao HB (2013) J Alloys Compd 558:11–17

    Article  CAS  Google Scholar 

  6. Chen BK, Du CJ, Zhang YZ, Sun RX, Zhou LI, Wang LJ (2015) Electrochim Acta 159:102–110

    Article  CAS  Google Scholar 

  7. Chen W, Zhou ZR, Wang RR, Wu ZT, Liang HF, Shao LY, Shu J, Wang ZC (2015) RSC Adv 5:49890–49898

    Article  CAS  Google Scholar 

  8. Hong ZS, Wei MD, Ding XK, Jiang LL, Wei KM (2010) Electrochem Commun 12:720–723

    Article  CAS  Google Scholar 

  9. Chen BK, CJ D, Zhang YZ, Sun RX, Zhou L, Wang LJ (2015) Electrochim Acta 159:102–110

    Article  CAS  Google Scholar 

  10. Tang HQ, Tang ZY, Du CQ, Qie FC, Zhu JT (2014) Electrochim Acta 120:187–192

    Article  CAS  Google Scholar 

  11. Liu J, Liu FK, Yang GL, Zhang XF, Wang JW, Wang RS (2010) Electrochim Acta 55:1067–1071

    Article  Google Scholar 

  12. Gao MX, Lin Y, Yin YH, Liu YF, Pan HG (2010) Electrochim Acta 55:8043–8050

    Article  CAS  Google Scholar 

  13. Tang HQ, Zan LX, Mao WF, Tang ZY (2015) J Electroanal Chem 751:57–64

    Article  CAS  Google Scholar 

  14. Xu XY, Hong ZS, Xia LC, Yang J, Wei MD (2013) Electrochim Acta 88:74–78

    Article  CAS  Google Scholar 

  15. Wang RY, Wang J, Qiu T, Chen LP, Liu HM, Yang WS (2012) Electrochim Acta 70:84–90

    Article  CAS  Google Scholar 

  16. Chen W, Liang HF, Ren WJ, Shao LY, Shu J, Wang ZC (2014) J Alloys Compd 611:65–73

    Article  CAS  Google Scholar 

  17. Sun D, Wang HY, Ding P, Zhou N, Huang XB, Tan S, Tang YG (2013) J Power Sources 242:865–871

    Article  CAS  Google Scholar 

  18. Nien YH, Carey JR, Che JS (2009) J Power Sources 193:822–827

    Article  CAS  Google Scholar 

  19. Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) J Electrochem Soc 153:A1108–A1114

    Article  CAS  Google Scholar 

  20. Kuwahara A, Suzuki S, Miyayama M (2008) Ceram Int 34:863–866

    Article  CAS  Google Scholar 

  21. Fedorkova A, Orinakova R, Orinak A, Taliana I, Heile A, Wiemhofer HD, Kaniansky D, Arlinghaus HF (2010) J Power Sources 195:3907–3912

    Article  CAS  Google Scholar 

  22. Cho YD, Fey GTK, Kao HM (2009) J Power Sources 189:256–262

    Article  CAS  Google Scholar 

  23. Tang HQ, Tang ZY (2014) J Alloys Comp 613:267–274

  24. Jin B, Jin EM, Park KH, Gu HB (2008) Electrochem Commun 10:1537–1540

    Article  CAS  Google Scholar 

  25. Tang HQ, Zhu JT, Tang ZY, Ma CX (2014) J Electroanal Chem 731:60–66

    Article  CAS  Google Scholar 

  26. Qie FC, Tang ZY (2014) Mater Express 4:221–227

    Article  CAS  Google Scholar 

  27. Wang L, LJ W, Li ZH, Lei GT, Xiao QZ, Zhang P (2011) Electrochim Acta 56:5343–5346

    Article  CAS  Google Scholar 

  28. Wang W, Guo YY, Liu LX, Wang SX, Yang XJ, Guo H (2014) J Power Sources 245:624–629

    Article  CAS  Google Scholar 

  29. Zhang WK, Zhou XZ, Tao XY, Huang H, Gan YP, Wan CT (2010) Electrochim Acta 55:2592–2596

    Article  CAS  Google Scholar 

  30. Liu YY, Cao CB, Li J (2010) Electrochim Acta 55:3921–3926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Nature Science Foundation of China (Nos. 21576030 and 51304077), the Hunan Provincial Natural Science Foundation of China (No. 13JJ4100), the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province of China (Nos. 2014CL03 and 2014CL15), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 15KJA150002), the Changzhou City Science and Technology Plan Projects (No. CE20150084), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobing Huang or Jianning Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Lu, P., Huang, X. et al. Enhanced electrochemical properties of Li2ZnTi3O8/C nanocomposite synthesized with phenolic resin as carbon source. J Solid State Electrochem 21, 125–131 (2017). https://doi.org/10.1007/s10008-016-3330-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3330-4

Keywords

Navigation