Journal of Solid State Electrochemistry

, Volume 20, Issue 12, pp 3405–3414 | Cite as

Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method

  • Mila N. Krstajić Pajić
  • Sanja I. Stevanović
  • Vuk V. Radmilović
  • Jelena R. Rogan
  • Velimir R. Radmilović
  • Snežana Lj. Gojković
  • Vladislava M. Jovanović
Original Paper


Pt nanoparticles supported on Vulcan XC-72R were synthesized by water-in-oil microemulsion method. By incorporating different amounts of HCl as a capping agent in the precursor-containing water phase, nanoparticle shape was varied. Influencing the growth of certain facets leads to the changes of the particle shape depending on the preferential facets. As a result, nanoparticles exhibit some of the electrochemical features typical for single crystals. Commonly employed synthesis procedure for water-in-oil microemulsion method was altered with the addition of catalyst support in the system and changing the catalyst cleaning steps. Prepared catalysts were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and electrochemical methods. Activity and stability for methanol oxidation reaction (MOR), a structure-sensitive reaction, were tested. Electrochemical results reveal the influence of particle size, shape and exposed facets on the electrochemical processes. TEM investigations confirm electrochemical findings, while TGA verifies Pt loading in catalyst powder. Based on the results, optimal HCl concentration for cubic particle formation is determined, and structural effect on MOR activity and stability was tested. Cuboidal NPs show very good reaction activity and fair stability under applied experimental conditions.


Pt nanoparticles Microemulsion method Methanol electrooxidation Electrocatalysis Fuel cell 



This work was financially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, contracts No.172060. VRR acknowledges support by Serbian Academy of Sciences and Arts under contract No. F-141.


  1. 1.
    Frelink T, Visscher W, van Veen JAR (1995) J Electroanal Chem 382:65–72CrossRefGoogle Scholar
  2. 2.
    Attwood PA, McNicol BD, Short RT (1980) J Appl Electrochem 10:213–222CrossRefGoogle Scholar
  3. 3.
    Stevanović S, Tripković D, Kowal A, Minić D, Jovanović VM, Tripković A (2008) J Serb Chem Soc 73:845–859CrossRefGoogle Scholar
  4. 4.
    Gojković SLJ, Vidaković TR (2001) Electrochim Acta 47:633–642CrossRefGoogle Scholar
  5. 5.
    Gloaguen F, Leger JM, Lamy C (1997) J Appl Electrochem 27:1052–1060CrossRefGoogle Scholar
  6. 6.
    Mikhaylova AA, Khazova OA, Bogotzky VS (2000) J Electroanal Chem 480:225–232CrossRefGoogle Scholar
  7. 7.
    Iwashita T (2002) Electrochim Acta 47:3663–3674CrossRefGoogle Scholar
  8. 8.
    Leger JM (2001) J Appl Electrochem 31:767–771CrossRefGoogle Scholar
  9. 9.
    Ye F, Li J, Wang T, Liu Y, Wei H, Li J, Wang X (2008) J Phys Chem C 112:12894–12898CrossRefGoogle Scholar
  10. 10.
    Job N, Fernando M, Pereira R, Lambert S, Cabiac A, Delahay G, Colomer J, Marien J, Figueiredo JL, Pirard JP (2006) J Catal 240:160–171CrossRefGoogle Scholar
  11. 11.
    Chen WX, Lee JY, Liu Z (2002) Chem Commun 21:2588–2589CrossRefGoogle Scholar
  12. 12.
    Tu W, Liu H (2000) J Mater Chem 10:2207–2211CrossRefGoogle Scholar
  13. 13.
    Liu Z, Guo B, Hong L, Lim T (2006) Electrochem Commun 8:83–90CrossRefGoogle Scholar
  14. 14.
    Stevanovic S, Tripkovic D, Rogan J, Popovic K, Lovic J, Tripkovic A, Jovanovic VM (2012) J Solid State Electrochem 16:3147–3157CrossRefGoogle Scholar
  15. 15.
    Wang Y, Zhang J, Wang X, Ren J, Zuo B, Tang Y (2005) Top Catal 35:35–41CrossRefGoogle Scholar
  16. 16.
    Islam MA, Bhuiya MA, Islam MS (2014) Asia Pac J Energy Environ 1:107–120CrossRefGoogle Scholar
  17. 17.
    Leong GJ, Schulze MC, Strand MB, Maloney D, Frisco SL, Dinh HN, Pivovar B, Richards RM (2014) Appl Organomet Chem 28:1–17CrossRefGoogle Scholar
  18. 18.
    Habas SE, Lee H, Radmilović VR, Somorjai GA, Yang P (2007) Nat Mater 6:692–697CrossRefGoogle Scholar
  19. 19.
    Martinez-Rodriguez RA, Vidal-Iglesias FT, Solla-Gullon J, Cabrera CR, Feliu JM (2014) J Am Chem Soc 136:1280–1283CrossRefGoogle Scholar
  20. 20.
    Peng Z, Yang H (2009) Nano Today 4:143–164CrossRefGoogle Scholar
  21. 21.
    Solla-Gullon J, Montiel V, Aldaz A, Clavilier J (2000) J Electroanal Chem 491:69–77CrossRefGoogle Scholar
  22. 22.
    Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun G, Behm RJ (2006) Electrochim Acta 52:221–233CrossRefGoogle Scholar
  23. 23.
    Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Langmuir 28:3658–3663CrossRefGoogle Scholar
  24. 24.
    Solla-Gullon J, Vidal-Iglesias FT, Herrero E, Feliu JM, Aldaz A (2006) Electrochem Commun 8:189–194CrossRefGoogle Scholar
  25. 25.
    Cherstiouk OV, Simonov PA, Zaikovskii VI, Savinova ER (2003) J Electroanal Chem 241:554–555Google Scholar
  26. 26.
    Cherstiouk OV, Simonov PA, Savinova ER, Zaikovskii VI (2003) Electrochim Acta 48:3851–3860CrossRefGoogle Scholar
  27. 27.
    Maillard F, Savinova ER, Simonov PA, Zaikovskii VI, Stimming U (2004) J Phys Chem B 108:17893–17904CrossRefGoogle Scholar
  28. 28.
    Guerin S, Hayden BE, Lee CE, Mormiche C, Owen JR, Russel AE, Theobald B, Thompsett D (2004) J Comb Chem 6:149–158CrossRefGoogle Scholar
  29. 29.
    Durst J, Simon C, Hasché F, Gasteiger HA (2015) J Electrochem Soc 162:F190–F203CrossRefGoogle Scholar
  30. 30.
    Housmans TH, Wonders AH, Koper MTM (2006) J Phys Chem B 110:10021–10031CrossRefGoogle Scholar
  31. 31.
    Solla-Gullon J, Vidal-Iglesias FJ, Lopez-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Phys Chem Chem Phys 10:3689–3698CrossRefGoogle Scholar
  32. 32.
    Park S, Xie Y, Weaver MJ (2002) Langmuir 18:5792–5798CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mila N. Krstajić Pajić
    • 1
  • Sanja I. Stevanović
    • 1
  • Vuk V. Radmilović
    • 2
  • Jelena R. Rogan
    • 3
  • Velimir R. Radmilović
    • 3
    • 4
  • Snežana Lj. Gojković
    • 3
  • Vladislava M. Jovanović
    • 1
  1. 1.Centre for Electrochemistry, ICTMUniversity of BelgradeBelgradeSerbia
  2. 2.Innovation Center, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  3. 3.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations