Journal of Solid State Electrochemistry

, Volume 20, Issue 11, pp 3165–3177 | Cite as

Electrical cross-talk in four-electrode experiments

A digital simulation approach to the example of rotating ring–disk electrodes
  • Soma Vesztergom
  • Norbert Barankai
  • Noémi Kovács
  • Mária Ujvári
  • Hans Siegenthaler
  • Peter Broekmann
  • Győző G. Láng
Original Paper

Abstract

The subject of this paper is electrical cross-talk, an interference between the current/voltage characteristics of the two working electrodes in four-electrode (generator/collector) systems. Cross-talk arises in electrochemical cells of finite resistance due to the superposition of the electrical fields of the working electrodes, and often causes difficulties in the interpretation of measurement results. In this paper, we present an algorithm for modelling simple generation/collection experiments with a rotating ring–disk electrode (RRDE) immersed into a finite resistance solution of a redox couple. We show that based on the analysis of the Kirchhoff (Laplace) matrix of the simulation mesh, the effect of electrical cross-talk may be accounted for in such experiments. The intensity of cross-talk is found to be heavily influenced by the selection of the reference point for potential measurements; in practice, this is the position of the reference electrode or the tip of the Luggin probe. The devised model is validated by means of a simple and demonstrative experiment.
Graphical Abstract

Keywords

RRDE Ohmic potential drop Cross-talk effects Digital simulations Kirchhoff (Laplace) matrix 

References

  1. 1.
    Frumkin AN, Nekrasov LN, Levich VG, Ivanov YB (1959). J Electroanal Chem 1:84–89Google Scholar
  2. 2.
    Barnes EO, Lewis GEM, Dale SEC, Marken F, Compton RG (2012). Analyst 137:1068–1081CrossRefGoogle Scholar
  3. 3.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Bard AJ, Mirkin MV (eds) (2012) Scanning electrochemical microscopy, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Vesztergom S, Ujvári M, Láng GG (2011). Electrochem Commun 13:378–381CrossRefGoogle Scholar
  6. 6.
    Vesztergom S, Ujvári M, Láng GG (2012). Electrochem Commun 19:1–4CrossRefGoogle Scholar
  7. 7.
    Vesztergom S, Láng GG (2013). Instrum Sci Technol 41:82–95CrossRefGoogle Scholar
  8. 8.
    Vesztergom S, Ujvári M, Láng G (2013) Dual dynamic voltammetry with rotating ring–disk electrodes. In: Saito Y, Kikuchi T (eds) Voltammetry: theory, types and applications. Nova Science Publishers, New YorkGoogle Scholar
  9. 9.
    Shen Y, Träuble M, Wittstock G (2008). Anal Chem 80:750– 759CrossRefGoogle Scholar
  10. 10.
    Eckhard K, Chen X, Turcu F, Schuhmann W (2006). Phys Chem Chem Phys 8:5359–5365CrossRefGoogle Scholar
  11. 11.
    Schwager P, Fenske D, Wittstock G (2015). J Electroanal Chem 740:82–87CrossRefGoogle Scholar
  12. 12.
    Schwager P, Dongmo S, Fenske D, Wittstock G (2016). Phys Chem Chem Phys 18:10774–10780CrossRefGoogle Scholar
  13. 13.
    Albery WJ, Compton RG, Hillman AR (1978). Trans Faraday Soc 74:1007–1019CrossRefGoogle Scholar
  14. 14.
    Albery WJ, Hillman AR (1979). Trans Faraday Soc 75:1623–1634CrossRefGoogle Scholar
  15. 15.
    Benzekri N, Keddam M, Takenouti H (1989). Electrochim Acta 34:1159–1166CrossRefGoogle Scholar
  16. 16.
    Kovács N, Ujvári M, Láng GG, Broekmann P, Vesztergom S (2015). Instrum Sci Technol 43:633–648CrossRefGoogle Scholar
  17. 17.
    Trinh D, Keddam M, Novoa XR, Vivier V (2011a). ChemPhysChem 12:2167–2176Google Scholar
  18. 18.
    Trinh D, Keddam M, Novoa XR, Vivier V (2011b). ChemPhysChem 12:2177–2183Google Scholar
  19. 19.
    Trinh D, Maisonhaute E, Vivier V (2012). Electrochem Commun 16:49–52CrossRefGoogle Scholar
  20. 20.
    Shabrang M, Bruckenstein S (1974). J Electrochem Soc 121:1439–1444CrossRefGoogle Scholar
  21. 21.
    Gabrielli C, Keddam M, Takenouti H (1972). J Chim Phys Phys - Chim Biol 69:737–740Google Scholar
  22. 22.
    Vesztergom S, Ujvári M, Láng GG (2013). Electrochim Acta 110:49–55CrossRefGoogle Scholar
  23. 23.
    Dörfel C, Rahner D, Forker W (1980). J Electroanal Chem 107:257–270CrossRefGoogle Scholar
  24. 24.
    Prater KB, Bard AJ (1970). J Electrochem Soc 117:207–213CrossRefGoogle Scholar
  25. 25.
    Feldberg SW, Bowers ML, Anson F (1986). J Electroanal Chem 215:11–28CrossRefGoogle Scholar
  26. 26.
    Farkas J, Kiss L, Fóthi Á (1980). Acta Chim Acad Sci Hung 104:405–415Google Scholar
  27. 27.
    Vesztergom S, Barankai N, Kovács N, Ujvári M, Wandlowski T, Láng GG (2014). Acta Chim Slov 61:223–232Google Scholar
  28. 28.
    Vesztergom S, Barankai N, Kovács N, Ujvári M, Broekmann P, Siegenthaler H, Láng GG (2016). Electrochem Commun 68:54– 58CrossRefGoogle Scholar
  29. 29.
    Riddiford AC (1966) Rotating disc systems. In: Delahay P, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 4. Interscience, New YorkGoogle Scholar
  30. 30.
    Kármán T (1921). Z Angew Math Mech 1:233–252CrossRefGoogle Scholar
  31. 31.
    Cochran WG (1934). Math Proc Cambridge Phil Soc 30:365– 375CrossRefGoogle Scholar
  32. 32.
    Nelder JA, Mead R (1965). Comput J 7:308–313CrossRefGoogle Scholar
  33. 33.
    Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood CliffsGoogle Scholar
  34. 34.
    Gutman I, Xiao W (2004). Bull Acad Serbe Sci Arts 129:15–23Google Scholar
  35. 35.
    Ben-Israel A, Greville TNE (2003) Generalized inverses. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physical ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.MTA-ELTE Research Group in Theoretical PhysicsBudapestHungary
  3. 3.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland

Personalised recommendations