Skip to main content

Electrochemical synthesis and characterization of poly(3-hexylthiophene)/single-walled carbon nanotube array hybrid materials

Abstract

In this study, we demonstrate that by directly employing single-walled carbon nanotube arrays (SWCNT-arrays)—grown on conductive substrates—as working electrodes, selective and uniform electrodeposition of a conducting polymer, namely poly(3-hexylthiophene), can be achieved on the surface of the nanotubes. The overall kinetic pattern of the electrodeposition was studied by separating the deposition charge from the one related to the redox transformation of the polymer film deposited during the precedent cycles. Both the structure and the electrochemical properties of the hybrid materials were studied as a function of the electrodeposition cycles, thus the amount of the formed polymer. The hybrids were characterized by electron microscopic (SEM, TEM) and vibrational spectroscopic (Raman spectroscopy) means. The obtained results were compared and contrasted with those gathered on macroscopic-sized multi-walled carbon nanotube array-based composites in our group recently. Overall, we conclude that electrochemical polymerization is an attractive tool to synthesize conducting polymer/SWCNT hybrid materials with controlled composition and morphology.

Highy organized nanostructures of conduction polymer/SWCNT array hybrids were obtained via electrodeposition

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Bergmann CP, de Andrade MJ (2011) Nanostructured materials for engineering applications. Springer, Berlin

    Book  Google Scholar 

  2. Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Annu Rev Chem Biomol Eng 1:37–58

    CAS  Article  Google Scholar 

  3. Schadler LS, Kumar SK, Benicewicz BC et al (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. MRS Bull 32:335–340

    CAS  Article  Google Scholar 

  4. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622

    CAS  Article  Google Scholar 

  5. Bai S, Shen X (2012) Graphene–inorganic nanocomposites. RSC Adv 2:64–98

    CAS  Article  Google Scholar 

  6. Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41:1831–1841

    CAS  Article  Google Scholar 

  7. Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic- inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261

    CAS  Article  Google Scholar 

  8. Rajamathi M, Seshadri R (2002) Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr Opin Solid State Mater Sci 6:337–345

    CAS  Article  Google Scholar 

  9. Lakshmi BB, Patrissi CJ, Martin CR (1997) Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9:2544–2550

    CAS  Article  Google Scholar 

  10. Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29:511–535

    CAS  Article  Google Scholar 

  11. Janáky C, Rajeshwar K (2015) The role of (photo)electrochemistry in the rational design of hybrid conducting polymer/semiconductor assemblies: from fundamental concepts to practical applications. Prog Polym Sci 43:96–135

    Article  Google Scholar 

  12. Mohanty US (2011) Electrodeposition : a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270

    CAS  Article  Google Scholar 

  13. Georgakilas V, Gournis D, Tzitzios V et al (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17:2679–2694

    CAS  Article  Google Scholar 

  14. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    CAS  Article  Google Scholar 

  15. Zhang Q, Huang J-Q, Qian W-Z et al (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265

    CAS  Article  Google Scholar 

  16. Frackowiak E (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon N Y 39:937–950

    CAS  Article  Google Scholar 

  17. Kecsenovity E, Endrődi B, Pápa Z et al (2016) Decoration of ultra-long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2 reduction. J Mater Chem A 4:3139–3147

  18. Woan BK, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube—TiO2 composites. Adv Mater 21:2233–2239

  19. Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. Rev Appl Electrochem 36:507–522

    CAS  Article  Google Scholar 

  20. Byrne MT, Gun’ko YK (2010) Recent advances in research on carbon nanotube-polymer composites. Adv Mater 22:1672–1688

    CAS  Article  Google Scholar 

  21. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    CAS  Article  Google Scholar 

  22. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    CAS  Article  Google Scholar 

  23. Qu F, Yang M, Jiang J et al (2005) Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal Biochem 344:108–114

    CAS  Article  Google Scholar 

  24. Janáky C, Visy C (2013) Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Anal Bioanal Chem 405:3489–3511

    Article  Google Scholar 

  25. Gao M, Huang S, Dai L et al (2000) Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew Chemie Int Ed 39:3664–3667

    CAS  Article  Google Scholar 

  26. Ates M, Karazehir T (2012) Micro-capacitor behavior of poly(3-hexyl thiophene)/carbon fiber/electrolyte system and equivalent circuit model. Polym Plast Technol Eng 51:1258–1265

    CAS  Article  Google Scholar 

  27. Rajeshwar K, Janaky C, Kecsenovity E (2016) Electrodeposition of inorganic oxide/nanocarbon composites: opportunities and challenges. ChemElectroChem 3:181–192

  28. Endrődi B, Samu GF, Fejes D et al (2015) Challenges and rewards of the electrosynthesis of macroscopic aligned carbon nanotube array/conducting polymer hybrid assemblies. J Polym Sci Part B Polym Phys 53:1507–1518

    Article  Google Scholar 

  29. Azam MA, Isomura K, Fujiwara A, Shimoda T (2012) Direct growth of vertically aligned single-walled carbon nanotubes on conducting substrate and its electrochemical performance in ionic liquids. Phys Status Solidi 209:2260–2266

    CAS  Article  Google Scholar 

  30. Ratcliff EL, Jenkins JL, Nebesny K, Armstrong NR (2008) Electrodeposited, “textured” poly(3-hexyl-thiophene) (e-P3HT) films for photovoltaic applications. Chem Mater 20:5796–5806

    CAS  Article  Google Scholar 

  31. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    CAS  Article  Google Scholar 

  32. Chen JH, Li WZ, Wang DZ et al (2002) Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon N Y 40:1193–1197

    CAS  Article  Google Scholar 

  33. Pieta P, Obraztsov I, Francis D et al (2013) Composites of conducting polymers and various carbon nanostructures for electrochemical supercapacitors. ECS J Solid State Sci Technol 2:M3120–M3134

    CAS  Article  Google Scholar 

  34. Star A, Han T-R, Gabriel J-CP et al (2003) Interaction of aromatic compounds with carbon nanotubes: correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett 3:1421–1423

    CAS  Article  Google Scholar 

  35. Huang J, Yang C, Hsu C et al (2009) Solvent-annealing-induced self-organization of poly(3-hexylthiophene), a high-performance electrochromic material. ACS Appl Mater Interfaces 1:2821–2828

    CAS  Article  Google Scholar 

  36. Dresselhaus MSS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  37. Baibarac M, Lapkowski M, Pron A et al (1998) SERS spectra of poly(3-hexylthiophene) in oxidized and unoxidized states. J Raman Spectrosc 29:825–832

    CAS  Article  Google Scholar 

  38. Endrődi B, Mellár J, Gingl Z et al (2014) Reasons behind the improved thermoelectric properties of poly(3-hexylthiophene) nanofiber networks. RSC Adv 4:55328–55333

    Article  Google Scholar 

  39. Endrődi B, Mellár J, Gingl Z et al (2015) Molecular and supramolecular parameters dictating the thermoelectric performance of conducting polymers: a case study using poly(3-alkylthiophene)s. J Phys Chem C 119:8472–8479

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by Grant-in-Aid for Japan Society of Promotion Science (JSPS) Research Fellows. MA. Azam is also grateful to the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, for financial support under the eScienceFund research grant scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Csaba Janáky or Csaba Visy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Endrődi, B., Samu, G.F., Azam, M.A. et al. Electrochemical synthesis and characterization of poly(3-hexylthiophene)/single-walled carbon nanotube array hybrid materials. J Solid State Electrochem 20, 3179–3187 (2016). https://doi.org/10.1007/s10008-016-3290-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3290-8

Keywords

  • Sweep Rate
  • Stainless Steel Substrate
  • Charge Capacitance
  • Redox Transformation
  • Tetrabutylammonium Perchlorate