Skip to main content

Advertisement

Log in

A novel Ni-Schiff base complex derived electrocatalyst for oxygen evolution reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Efficient electrocatalysts for the oxygen evolution reaction (OER) are critical for various energy conversion devices such as metal-air batteries, rechargeable fuel cell, and water splitting for hydrogen production. In this work, a novel non-precious-metal OER catalyst was prepared from the pyrolysis of a Ni-Schiff base complex with thiourea. The derived catalyst is composed of nickel oxide coupled with nickel sulfide loaded on nitrogen-doped carbon matrix (NiO-NiS/N-C), which manifested excellent OER electrocatalytic activity, and an onset potential of 1.54 V vs reversible hydrogen electrode was achieved in alkaline electrolyte. The high performance of as-obtained electrocatalyst was illustrated by fully dispersed active components of NiO coupled with NiS nanoparticles, as well as the strong interaction between NiS, NiO particles, and N-doped carbon substrate. Our findings supply an easier path to fabricate the active catalyst through one-step metal organic framework transformation way and are promising for use in energy conversion systems and also yield new impetus for exploring other non-noble metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas IL, Dresselhaus MD (2001) Alternative energy technologies. Nature 414(6861):332–3372

    Article  Google Scholar 

  2. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326

    Article  CAS  Google Scholar 

  3. Cheng F, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192

    Article  CAS  Google Scholar 

  4. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385

    Article  CAS  Google Scholar 

  5. Bediako DK, Surendranath Y, Nocera DG (2013) Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J Am Chem Soc 135(9):3662–3674

    Article  CAS  Google Scholar 

  6. Hu J (2004) Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of Tafel lines and EIS. Int J Hydrog Energy 29(8):791–797

    Article  CAS  Google Scholar 

  7. Over H (2012) Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chem Rev 112(6):3356–3426

    Article  CAS  Google Scholar 

  8. Burke LD (1986) The formation and stability of hydrous oxide films on iron under potential cycling conditions in aqueous solution at high pH. J Electroanal Chem 198(2):347–368

    Article  CAS  Google Scholar 

  9. Corrigan DA (1987) The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J Electrochem Soc 134(2):377–384

    Article  CAS  Google Scholar 

  10. Lyons ME, Doyle RL, Brandon MP (2011) Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base. Phys Chem Chem Phys 13(48):21530–21551

    Article  CAS  Google Scholar 

  11. Robinson DM, Yong BG, Greenblatt M, Dismukes GC (2010) Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J Am Chem Soc 132(33):11467–11469

    Article  CAS  Google Scholar 

  12. Ramírez A, Bogdanoff P, Friedrich D, Fiechter S (2012) Synthesis of Ca2Mn3O8 films and their electrochemical studies for the oxygen evolution reaction (OER) of water. Nano Energy 1(2):282–289

    Article  Google Scholar 

  13. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11(6):550–557

    Article  CAS  Google Scholar 

  14. Wang J, Zhong HX, Qin YL, Zhang XB (2013) An efficient three-dimensional oxygen evolution electrode. Angew Chem Int Ed 52(20):5248–5253

    Article  CAS  Google Scholar 

  15. Lin L, Zhu Q, Xu AW (2014) Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J Am Chem Soc 136(31):11027–11033

    Article  CAS  Google Scholar 

  16. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136(39):13925–13931

    Article  CAS  Google Scholar 

  17. Xu K, Chen P, Li X, Tong Y, Ding H, Wu X, Chu W, Peng Z, Wu C, Xie Y (2015) Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc 137(12):4119–4125

    Article  CAS  Google Scholar 

  18. Shalom M, Ressnig D, Yang X, Clavel G, Fellinger TP, Antonietti M (2015) Nickel nitride as an efficient electrocatalyst for water splitting. J Mater Chem A 3(15):8171–8177

    Article  CAS  Google Scholar 

  19. Li X, Walsh FC, Pletcher D (2011) Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys Chem Chem Phys 13(3):1162–1167

    Article  CAS  Google Scholar 

  20. Ratcliff EL, Meyer J, Steirer KX, Garcia A, Berry JJ, Ginley DS, Olson DC, Kahn A, Armstrong NR (2011) Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem Mater 23(22):4988–5000

    Article  CAS  Google Scholar 

  21. Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) Efficient water oxidation using nanostructured alpha-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136(19):7077–7084

    Article  CAS  Google Scholar 

  22. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136(18):6744–6753

    Article  CAS  Google Scholar 

  23. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135(23):8452–8455

    Article  CAS  Google Scholar 

  24. Diaz-Morales O, Ledezma-Yanez I, Koper MTM, Calle-Vallejo F (2015) Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal 5(9):5380–5387

    Article  CAS  Google Scholar 

  25. Zhou W, Wu X-J, Cao X, Huang X, Tan C, Tian J, Liu H, Wang J, Zhang H (2013) Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ Sci 6(10):2921–2924

    Article  CAS  Google Scholar 

  26. Lu X, Yim WL, Suryanto BH, Zhao C (2015) Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am Chem Soc 137(8):2901–2907

    Article  CAS  Google Scholar 

  27. Tian J, Liu Q, Asiri AM, Alamry KA, Sun X (2014) Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. ChemSusChem 7(8):2125–2130

    Article  CAS  Google Scholar 

  28. Mao S, Wen Z, Huang T, Hou Y, Chen J (2014) High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci 7(2):609–616

    Article  CAS  Google Scholar 

  29. Liang Y, Li Y, Wang H, Dai H (2013b) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036

    Article  CAS  Google Scholar 

  30. Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5(11):5002–5008

    Article  CAS  Google Scholar 

  31. Li J, Tang S, Lu L, Zeng HC (2007) Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J Am Chem Soc 129(30):9401–9409

    Article  CAS  Google Scholar 

  32. Wu J, Xue Y, Yan X, Yan W, Cheng Q, Xie Y (2012) Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5(8):521–530

    Article  CAS  Google Scholar 

  33. Sasan K, Kong A, Wang Y, Chengyu M, Zhai Q, Feng P (2015) From hemoglobin to porous N–S–Fe-doped carbon for efficient oxygen electroreduction. J Phys Chem C 119(24):13545–13550

    Article  CAS  Google Scholar 

  34. Tian T, Ai L, Jiang J (2015) Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Adv 5(14):10290–10295

    Article  CAS  Google Scholar 

  35. Wu R, Zhang J, Shi Y, Liu D, Zhang B (2015) Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J Am Chem Soc 137(22):6983–6986

    Article  CAS  Google Scholar 

  36. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed 51(46):11496–11500

    Article  CAS  Google Scholar 

  37. Liang J, Du X, Gibson C, Du XW, Qiao SZ (2013a) N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv Mater 25(43):6226–6231

    Article  CAS  Google Scholar 

  38. Chen S, Duan J, Jaroniec M, Qiao SZ (2014) Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv Mater 26(18):2925–2930

    Article  CAS  Google Scholar 

  39. Kumar S, Dhar DN, Saxena PN (2009) Application of Schiff bases complexes of Schiff bases—a review. J Sci Ind Res 68(3):181–187

    CAS  Google Scholar 

  40. Bushra Begum A, Rekha ND, Vasantha Kumar BC, Lakshmi Ranganatha V, Khanum SA (2014) Synthesis, characterization, biological and catalytic applications of transition metal complexes derived from Schiff base. Bioorg Med Chem Lett 24(25):3559–3564

    Article  CAS  Google Scholar 

  41. Abram U, Ortner K, Gust R, Sommer K (2000) Gold complexes with thiosemicarbazones: reactions of bi- and tridentate thiosemicarbazones with dichloro[2-(dimethylaminomethyl)phenyl-C 1,N ]gold(III), [Au(damp-C 1,N )Cl2]. Dalton Trans 5:735–744

    Article  Google Scholar 

  42. Meng ZY, Peng YY, Yu WC, Qian YT (2002) Solvothermal synthesis and phase control of nickel sulfides with different morphologies. Mater Chem Phys 74(2):230–233

    Article  CAS  Google Scholar 

  43. Zhang HT, Wu G, Chen XH (2005) Synthesis and magnetic properties of NiS1 + x nanocrystallines. Mater Lett 59(28):3728–3731

    Article  CAS  Google Scholar 

  44. Chen N, Zhang WQ, Yu WC, Qian YT (2002) Synthesis of nanocrystalline NiS with different morphologies. Mater Lett 55(4):230–233

    Article  CAS  Google Scholar 

  45. Xiao M, Zhu J, Feng L, Liu C, Xing W (2015) Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv Mater 27(15):2521–2527

    Article  CAS  Google Scholar 

  46. Feng LL, Yu G, Wu Y, Li GD, Li H, Sun Y, Asefa T, Chen W, Zou X (2015) High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc 137(44):14023–14026

    Article  CAS  Google Scholar 

  47. Cheng NY, Liu Q, Tian JQ, Sun XP, He YQ, Zhai SY, Asiri AM (2015) Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. Int J Hydrog Energy 40(32):9866–9871

    Article  CAS  Google Scholar 

  48. Wang J, Li K, Zhong HX, Xu D, Wang ZL, Jiang Z, Wu ZJ, Zhang XB (2015) Synergistic effect between metal-nitrogen-carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew Chem Int Ed 54(36):10530–10534

    Article  Google Scholar 

  49. Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9(1):931–940

    Article  CAS  Google Scholar 

  50. Da Silva LaDF LM, Boodts JFC (2001) Determination of the morphology factor of oxide layers. Electrochim Acta 47(3):395–403

    Article  Google Scholar 

  51. Mccrory CC, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987

    Article  CAS  Google Scholar 

  52. Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS (2012) Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J Am Chem Soc 134(39):16127–16130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Bingtuan Innovation Team in Key Areas (2015BD003), Open Project for Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region (2015BTRC004), and General Project for Natural Science and Technology of Shihezi University (ZRKXYB-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banghua Peng.

Electronic supplementary material

ESM 1

(DOCX 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Yang, L., Dai, B. et al. A novel Ni-Schiff base complex derived electrocatalyst for oxygen evolution reaction. J Solid State Electrochem 20, 2737–2747 (2016). https://doi.org/10.1007/s10008-016-3279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3279-3

Keywords

Navigation