Skip to main content
Log in

Graphitic C3N4@MWCNTs supported Mn3O4 as a novel electrocatalyst for the oxygen reduction reaction in zinc–air batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of catalysts (g-C3N4@MWCNTs/Mn3O4) were prepared from g-C3N4, MWCNTs, and Mn3O4 for oxygen reduction reaction (ORR) in zinc–air batteries. From the half-cell tests, the loading of 35 % Mn3O4 (sample GMM35) presents an excellent activity toward ORR in alkaline condition. Rotating ring-disk electrode (RRDE) studies reveal that 3.6∼3.8 electrons are transferred with a H2O2 yield of 11.4 % at −0.4 V. Meanwhile, the GMM35 nanocomposite exhibits the same durability as commercial 20 wt% Pt/C in alkaline condition, but it shows lower peak power density (192.4 mW cm−2 at 229.1 mA cm−2) and cell voltage than those with a commercial Pt/C catalyst (260.9 mW cm−2 at 285.4 mA cm−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li P-C, Hu C-C, Lee T-C, Chang W-S, Wang TH (2014) Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries. J Power Sources 269:88–97

    Article  CAS  Google Scholar 

  2. Ma H, Wang B, Fan Y, Hong W (2014) Development and characterization of an electrically rechargeable zinc-air battery stack. Energies 7(10):6549–6557

    Article  Google Scholar 

  3. Li Y, Dai H (2014) Recent advances in zinc-air batteries. Chem Soc Rev 43(15):5257–5275

    Article  CAS  Google Scholar 

  4. Park GS, Lee J-S, Kim ST, Park S, Cho J (2013) Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. J Power Sources 243:267–273

    Article  CAS  Google Scholar 

  5. Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132:4984–4985

    Article  CAS  Google Scholar 

  6. Zhou H, W-p Z, Adzic RR, Wong SS (2009) Enhanced electrocatalytic performance of one-dimensional metal nanowires and arrays generated via an ambient, surfactantless synthesis. J Phys Chem C 113:5460–5466

    Article  CAS  Google Scholar 

  7. Peng Z, You H, Wu J, Yang H (2010) Electrochemical synthesis and catalytic property of sub-10 nm platinum cubic nanoboxes. Nano Lett 10(4):1492–1496

    Article  CAS  Google Scholar 

  8. Liu Y, Chen S, Quan X, Yu H, Zhao H, Zhang Y, Chen G (2013) Boron and nitrogen codoped nanodiamond as an efficient metal-free catalyst for oxygen reduction reaction. J Phys Chem C 117(29):14992–14998

    Article  CAS  Google Scholar 

  9. Wohlgemuth S-A, White RJ, Willinger M-G, Titirici M-M, Antonietti M (2012) A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem 14(5):1515–1523

    Article  CAS  Google Scholar 

  10. Wiggins-Camacho JD, Stevenson KJ (2011) Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. J Phys Chem C 115(40):20002–20010

    Article  CAS  Google Scholar 

  11. Ma G, Jia R, Zhao J, Wang Z, Song C, Jia S, Zhu Z (2011) Nitrogen-doped hollow carbon nanoparticles with excellent oxygen reduction performances and their electrocatalytic kinetics. J Phys Chem C 115(50):25148–25154

    Article  CAS  Google Scholar 

  12. Liu Z, Zhang G, Lu Z, Jin X, Chang Z, Sun X (2013) One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res 6(4):293–301

    Article  CAS  Google Scholar 

  13. Liu R, Wu D, Feng X, Mullen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Ed 49(14):2565–2569

    Article  CAS  Google Scholar 

  14. Zheng B, Wang J, Wang FB, Xia XH (2013) Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction. Electrochem Commun 28:24–26

    Article  CAS  Google Scholar 

  15. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5(5):6717

    Article  CAS  Google Scholar 

  16. Zhai H-S, Cao L, Xia X-H (2013) Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin Chem Lett 24(2):103–106

    Article  CAS  Google Scholar 

  17. Lyth SM, Nabae Y, Moriya S, Kuroki S, M-a K, J-i O, Miyata S (2009) Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. J Phys Chem C 113:20148–20151

    Article  CAS  Google Scholar 

  18. Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133(50):20116–20119

    Article  CAS  Google Scholar 

  19. Tian J, Ning R, Liu Q, Asiri AM, Al-Youbi AO, Sun X (2014) Three-dimensional porous supramolecular architecture from ultrathin g-C(3)N(4) nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl Mater Interfaces 6(2):1011–1017

    Article  CAS  Google Scholar 

  20. Pandiaraj S, Aiyappa HB, Banerjee R, Kurungot S (2014) Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem Commun (Camb) 50(25):3363–3366

    Article  CAS  Google Scholar 

  21. Liang J, Zheng Y, Chen J, Liu J, Hulicova-Jurcakova D, Jaroniec M, Qiao SZ (2012) Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew Chem 51(16):3892–3896

    Article  CAS  Google Scholar 

  22. Xu L, Li H, Xia J, Wang L, Xu H, Ji H, Li H, Sun K (2014) Graphitic carbon nitride nanosheet supported high loading silver nanoparticle catalysts for the oxygen reduction reaction. Mater Lett 128:349–353

    Article  CAS  Google Scholar 

  23. Wang M-Q, Yang W-H, Wang H-H, Chen C, Zhou Z-Y, Sun S-G (2014) Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal 4(11):3928–3936

    Article  CAS  Google Scholar 

  24. Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K (2010) Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chem Commun (Camb) 46(40):7492–7494

    Article  CAS  Google Scholar 

  25. Jin J, Fu X, Liu Q, Zhang J (2013) A highly active and stable electrocatalyst for the oxygen reduction reaction based on a graphene-supported g-C3N4@cobalt oxide core–shell hybrid in alkaline solution. J Mater Chem A 1(35):10538

    Article  CAS  Google Scholar 

  26. Lv X, Lv W, Wei W, Zheng X, Zhang C, Zhi L, Yang Q-H (2015) A hybrid of holey graphene and Mn3O4 and its oxygen reduction reaction performance. Chem Commun 51:3911–3914

    Article  CAS  Google Scholar 

  27. Duan J, Chen S, Dai S, Qiao SZ (2014) Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity. Adv Funct Mater 24(14):2072–2078

    Article  CAS  Google Scholar 

  28. Bag S, Roy K, Gopinath CS, Raj CR (2014) Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn(3)O(4) hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl Mater Interfaces 6(4):2692–2699

    Article  CAS  Google Scholar 

  29. Huang D, Zhang B, Li S, Wang M, Shen Y (2014) Mn3O4/carbon nanotube nanocomposites as electrocatalysts for the oxygen reduction reaction in alkaline solution. Chem Electro Chem 1(9):1531–1536

    CAS  Google Scholar 

  30. Xing C, Wu Z, Jiang D, Chen M (2014) Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity. J Colloid Interface Sci 433:9–15

    Article  CAS  Google Scholar 

  31. Wu Q, Jiang L, Qi L, Wang E, Sun G (2014) Electrocatalytic performance of Ni modified MnOx/C composites toward oxygen reduction reaction and their application in Zn–air battery. Int J Hydrog Energy 39(7):3423–3432

    Article  CAS  Google Scholar 

  32. Raj BGS, Ramprasad RNR, Asiri AM, Wu JJ, Anandan S (2015) Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim Acta 156:127–137

    Article  CAS  Google Scholar 

  33. Teng F, Santhanagopalan S, Wang Y, Meng DD (2010) In-situ hydrothermal synthesis of three-dimensional MnO2–CNT nanocomposites and their electrochemical properties. J Alloys Compd 499(2):259–264

    Article  CAS  Google Scholar 

  34. He F, Chen X, Shen Y, Li Y, Liu A, Liu S, Mori T, Zhang Y (2016) Ionic liquid-derived Fe–N/C catalysts for highly efficient oxygen reduction reaction without any supports, templates, or multi-step pyrolysis. J Mater Chem A 4(17):6630–6638

    Article  CAS  Google Scholar 

  35. Biddinger EJ, Dv D, Singh D, Marsh H, Tan B, Knapke DS, Ozkan US (2011) Examination of catalyst loading effects on the selectivity of CNx and Pt/VC ORR catalysts using RRDE. J Electrochem Soc 158(4):B402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jiangsu Key Laboratory for Advanced Metallic Materials (BM2007204) and the Analytical Test Fund of Southeast University (201226). LL would also like to thank Professor Yuanjian Zhang at Southeast University and Professor Galina Tsirlina, the editor of this manuscript, for helpful suggestions for data treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Sun, T., Fu, Y. et al. Graphitic C3N4@MWCNTs supported Mn3O4 as a novel electrocatalyst for the oxygen reduction reaction in zinc–air batteries. J Solid State Electrochem 20, 2685–2692 (2016). https://doi.org/10.1007/s10008-016-3277-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3277-5

Keywords

Navigation