Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 10, pp 2791–2803 | Cite as

Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries

  • Weimin Kang
  • Xiaomin Ma
  • Huihui Zhao
  • Jingge Ju
  • Yixia Zhao
  • Jing YanEmail author
  • Bowen ChengEmail author
Original Paper

Abstract

The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10−3 S cm−1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g−1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).

Keywords

Cellulose acetate Poly(vinylidene fluoride) Electrospinning Gel polymer electrolyte Lithium-ion battery 

Notes

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (51102178), National Key Technology Support Program (2015BAE01B03), Innovation Fund for Technology of China (14C26211200298), Innovation Fund for Technology of Tianjin (14ZXCXGX00776), and Chang-jiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT13084) for their financial support.

References

  1. 1.
    Ye W, Zhu J, Liao XJ, Jiang SH, Li YH, Fang H, Hou HQ (2015) J Power Sources 299:417–424CrossRefGoogle Scholar
  2. 2.
    Miao Y, Zhu YG, Hou HQ, Xia YY, Liu TX (2013) J Power Sources 266:82–86CrossRefGoogle Scholar
  3. 3.
    Kumar J, Kichambare P, Rai AK, Bhattacharya R, Rodrigues S, Subramanyam G (2016) J Power Sources 301:194–198CrossRefGoogle Scholar
  4. 4.
    Zhao P, Yang JP, Shang YM, Wang L, Fang M, Wang JL, He XM (2015) J Energy Chem 24:138–144CrossRefGoogle Scholar
  5. 5.
    Gong SD, Huang Y, Cao HJ, Lin YH, Li Y, Tang SH, Wang MS, Li X (2016) J Power Sources 307:624–633CrossRefGoogle Scholar
  6. 6.
    Wang QJ, Song WL, Fan LZ, Shi Q (2015) J Power Sources 295:139–148CrossRefGoogle Scholar
  7. 7.
    Goodenough JB, Kim Y (2010) Chem Mater 22:587–603CrossRefGoogle Scholar
  8. 8.
    Wang SH, Kuo PL, Hsieh CT, Teng H (2014) ACS Appl Mater Interfaces 6:19360–19370CrossRefGoogle Scholar
  9. 9.
    Kim DW (1998) J Power Sources 76:175–179CrossRefGoogle Scholar
  10. 10.
    Zheng JY, Li X, Yu YJ, Zhen XM, Song YY, Feng XM, Zhao YF (2014) J Solid State Electrochem 18:2013–2018CrossRefGoogle Scholar
  11. 11.
    Peng XX, Zhou L, Jing B, Cao Q, Wang XY, Tang XL, Zeng J (2016) J Solid State Electrochem 20:255–262CrossRefGoogle Scholar
  12. 12.
    Santhosh P, Gopalan A, Vasudevan T, Lee KP (2006) J Appl Polym Sci 101:611–617CrossRefGoogle Scholar
  13. 13.
    Jiang Z, Carroll B, Abraham KM (1997) Electrochim Acta 42:2667–2677CrossRefGoogle Scholar
  14. 14.
    Gopalan AI, Santhosh P, Manesh KM (2008) J Membr Sci 325:683–690CrossRefGoogle Scholar
  15. 15.
    Tsai PP, Gibson HS, Gibson P (2002) J Electrost 54:333–341CrossRefGoogle Scholar
  16. 16.
    Wang X, Drew C, Lee SH, Senecal KJ, Kumar J, Samuelson LA (2002) Nano Lett 2:1273–1275CrossRefGoogle Scholar
  17. 17.
    Lu L, Zuo XX, Li WS, Liu JS, Xu MQ (2007) Acta Chim Sin 65:475–480Google Scholar
  18. 18.
    Choi SW, Jo SM, Lee WS, Kim YR (2003) Adv Mater 15:2027–2032CrossRefGoogle Scholar
  19. 19.
    Abbrent S, Pletstil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Polymer 42:1407–1416CrossRefGoogle Scholar
  20. 20.
    Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrochim Acta 50:69–75CrossRefGoogle Scholar
  21. 21.
    Zhai YY, Wang N, Mao X, Si Y, Yu JY, Al-Deyab SS, El-Newehy M, Ding B (2014) J Mater Chem A 2:14511–14518CrossRefGoogle Scholar
  22. 22.
    Chen WY, Liu YB, Ma Y, Yang WX (2015) J Power Sources 273:1127–1135CrossRefGoogle Scholar
  23. 23.
    Hao Q, Xu CX, Jia SZ, Zhao XY (2013) Electrochim Acta 113:439–445CrossRefGoogle Scholar
  24. 24.
    Gopalan AI, Lee KP, Manish KM, Santhosh P (2008) J Membr Sci 318:422–428CrossRefGoogle Scholar
  25. 25.
    Kim JK, Cheruvally G, Li X, Ahn JH, Kim KM, Ahn HJ (2008) J Power Sources 178:815–820CrossRefGoogle Scholar
  26. 26.
    Zhong Z, Cao Q, Jing B, Wang XY, Li XY, Den HY (2012) Mater Sci Eng B Adv 177:86–91CrossRefGoogle Scholar
  27. 27.
    Sivakumar M, Subadevi R, Rajendran S, Wu HC, Wu NL (2007) Eur Polym J 43:4466–4473CrossRefGoogle Scholar
  28. 28.
    Wu N, Cao Q, Wang XY, Chen QQ (2011) Solid State Ionics 203:42–46CrossRefGoogle Scholar
  29. 29.
    Rajendran S, Mahendran O, Mahalingam T (2002) Eur Polym J 38:49–55CrossRefGoogle Scholar
  30. 30.
    Rajendran S, Mahendran O, Kannan R (2002) Mater Chem Phys 74:52–57CrossRefGoogle Scholar
  31. 31.
    Wang YP, Gao XH, Wang RM (2008) Funct Polym 68:1170–1177CrossRefGoogle Scholar
  32. 32.
    Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Carbohydr Polym 86:1790–1798CrossRefGoogle Scholar
  33. 33.
    Weng BC, Xu FH, Alcoutlabi M, Mao YB, Lozano K (2015) Cellulose 22:1311–1320CrossRefGoogle Scholar
  34. 34.
    Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Benevent D (2013) Cellulose 20:1523–1545CrossRefGoogle Scholar
  35. 35.
    Chun SJ, Choi ES, Lee EH, Kim JH, Lee SY, Lee SY (2012) J Mater Chem 22:16618–16626CrossRefGoogle Scholar
  36. 36.
    Mu CX, Su YL, Sun MP, Chen WJ, Jiang ZY (2010) J Membr Sci 350:293–300CrossRefGoogle Scholar
  37. 37.
    Arthanareeswaran G, Thanikaivelan P, Raajenthiren M (2008) Ind Eng Chem Res 47:1488–1494CrossRefGoogle Scholar
  38. 38.
    Chiang CY, Shen YJ, Reddy MJ, Chu PP (2003) J Power Sources 123:222–229CrossRefGoogle Scholar
  39. 39.
    Kataoka H, Saito Y, Sakai T (2000) J Phys Chem B 104:11460–11464CrossRefGoogle Scholar
  40. 40.
    Saito Y, Kataoka H, Quartarone E, Mustarelli P (2002) J Phys Chem B 106:7200–7204CrossRefGoogle Scholar
  41. 41.
    Chang CY, Shen YJ, Reddy MJ, Chu PP (2003) J Power Sources 123:222–229CrossRefGoogle Scholar
  42. 42.
    Malmonge LF, Langiano SC, Cordeiro JM, Mattoso LH, Malmonge JA (2010) Mater Res 13:465–470CrossRefGoogle Scholar
  43. 43.
    Cao J, Wang L, Fang M, He XM, Li JJ, Gao J, Deng LF, Wang JL, Chen H (2014) J Power Sources 246:499–504CrossRefGoogle Scholar
  44. 44.
    Zhang JJ, Liu ZH, Kong QS, Zhang CJ, Pang SP, Yue LP, Wang XJ, Yao JH, Cui GL (2013) ACS Appl Mater Interfaces 5:128–134CrossRefGoogle Scholar
  45. 45.
    Yanilmaz M, Dirican M, Zhang XW (2014) Electrochim Acta 133:501–508CrossRefGoogle Scholar
  46. 46.
    Chen WJ, Shi LY, Wang ZY, Zhu JF, Yang HJD, Mao XF, Chi MM, Sun LN, Yuan S (2016) Carbohydr Polym 147:517–524CrossRefGoogle Scholar
  47. 47.
    Xu Q, Kong QS, Liu ZH, Wang XJ, Liu RZ, Zhang JJ, Yue LP, Duan YL, Cui GL (2014) ACS Sustain Chem Eng 2:194–199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjin Polytechnic UniversityTianjinChina
  2. 2.School of TextilesTianjin Polytechnic UniversityTianjinChina
  3. 3.Department of Advanced Organic Materials and Textile System EngineeringChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations