Skip to main content
Log in

Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Multilayer super-short carbon nanotubes (SSCNTs) could be synthesized by tailoring the raw multiwalled carbon nanotubes (MWCNTs) with a simple ultrasonic oxidation-cut method. The present study represents a facile method for the preparation of FeCl3-doped PANI/SSCNTs (PANI/SSCNTs/Fe3+) composites as a supercapacitor electrode material with noteworthy performance. The materials were fabricated through in situ polymerization of ferric chloride-doped aniline in the presence of SSCNTs in HCl medium, and were characterized by FTIR and Raman spectroscopy and an XRD study. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses confirmed the successful coating of Fe3+-doped PANI on the SSCNTs surface. The electrochemical characterizations were carried out by a three-electrode probe method, with 3 M NaOH as the electrolyte. Galvanostatic charge-discharge test established the superiority of the PANI/SSCNTs/Fe3+ nanocomposite as a supercapacitor electrode material with maximum specific capacitance of 727 F g−1 at 1 A g−1, and 92 % of initial specific capacitance retention over 1000 number of charge discharge cycle. Moreover, the as-prepared nanocomposites showed higher electrical conductivity of 6.5 S cm−1 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J (2012) WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24(7):938–944

    Article  CAS  Google Scholar 

  2. Yunpu Z, Yuqian D, Dongyuan Z, Fulvio PF, Mayes RT, Sheng D (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    Article  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Plenum Publishers, New York

    Book  Google Scholar 

  4. Kumar NA, Choi HJ, Shin YR, Chang DW, Dai L, Baek JB (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6(2):1715–1723

    Article  CAS  Google Scholar 

  5. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10(10):4025–4031

    Article  CAS  Google Scholar 

  6. Te-Yu W, Chun-Hung C, Hsing-Chi C, Shih-Yuan L, Chi-Chang H (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22(3):347–351

    Article  Google Scholar 

  7. Torsten B, John W, Tolbert SH, Bruce D (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9(2):146–151

    Article  Google Scholar 

  8. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12(5):2559–2567

    Article  CAS  Google Scholar 

  9. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172

    Article  CAS  Google Scholar 

  10. Lee JW, Hall AS, Kim JD, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24(6):1158–1164

    Article  CAS  Google Scholar 

  11. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  12. Xin-Gui L, Hao F, Mei-Rong H, Guo-Li G, Moloney MG (2012) Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime. Anal Chem 84(1):134–140

    Article  Google Scholar 

  13. Kovalenko I, Bucknall DG, Yushin G (2010) Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv Funct Mater 20(22):3979–3986

    Article  CAS  Google Scholar 

  14. Won Jun L, Duck Hyun L, Tae Hee H, Hwa LS, Hyoung-Seok M, Ah LJ, Ouk KS (2011) Biomimetic mineralization of vertical N-doped carbon nanotubes. Chem Commun 47(1):535–537

    Article  Google Scholar 

  15. Tae Hee H, Won Jun L, Duck Hyun L, Eun KJ, Eun-Young C, Ouk KS (2010) Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater 22(18):2060–2064

    Article  Google Scholar 

  16. Zheng L, Wang X, An H, Wang X, Yi L, Bai L (2011) The preparation and performance of flocculent polyaniline/carbon nanotubes composite electrode material for supercapacitors. J Solid State Electrochem 15(4):675–681

    Article  CAS  Google Scholar 

  17. Yoon SB, Yoon EH, Kim KB (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sources 196(24):10791–10797

    Article  CAS  Google Scholar 

  18. Zhen L, Yang L, Lin Z, Selcuk P, Ning L, Moon K, James S, Xiaolong W, Yajiao Y, Xinyu Z (2012) Controlled synthesis of transition metal/conducting polymer nanocomposites. Nanotechnology 23(33):335603–335612

    Article  Google Scholar 

  19. Patil DS, Shaikh JS, Dalavi DS, Karanjkar MM, Devan RS, Ma YR, Patil PS (2011) An Mn doped polyaniline electrode for electrochemical supercapacitor. J Electrochem Soc 158(6):A653–A657

    Article  CAS  Google Scholar 

  20. Ghosh D, Giri S, Mandal A, Das CK (2013) H+, Fe3+ codoped polyaniline/MWCNTs nanocomposite: superior electrode material for supercapacitor application. Appl Surf Sci 276(4):120–128

    Article  CAS  Google Scholar 

  21. Ghosh D, Giri S, Mandal A, Das CK (2013) Supercapacitor based on H+ and Ni2+ co-doped polyaniline/MWCNTs nanocomposite: synthesis and electrochemical characterization. RSC Adv 29(3):11676–11685

    Article  Google Scholar 

  22. Dhibar S, Sahoo S, Das C (2013) Copper chloride-doped polyaniline/multiwalled carbon nanotubes nanocomposites: superior electrode material for supercapacitor applications. Polym Compos 34(4):517–525

    Article  CAS  Google Scholar 

  23. Karthikeyan G, Sahoo S, Nayak G, Das C (2012) Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors. J Nanosci Nanotechnol 12(3):2704–2710

    Article  CAS  Google Scholar 

  24. Zeng F, Kuang Y, Zhang N, Huang Z, Pan Y, Hou Z, Zhou H, Yan C, Schmidt OG (2014) Multilayer super-short carbon nanotube/reduced graphene oxide architecture for enhanced supercapacitor properties. J Power Sources 247:396–401

    Article  CAS  Google Scholar 

  25. Chiang JC, MacDiarmid AG (1986) ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13(1):193–205

    Article  CAS  Google Scholar 

  26. Yang C, Chen C (2005) Synthesis, characterisation and properties of polyanilines containing transition metal ions. Synth Met 153(1):133–136

    Article  CAS  Google Scholar 

  27. Chen SA, Lin LC (1995) Polyaniline doped by the new class of dopant, ionic salt: structure and properties. Macromolecules 28(4):1239–1245

    Article  CAS  Google Scholar 

  28. Izumi CMS, Constantino VRL, Ferreira AMC, Temperini MLA (2006) Spectroscopic characterization of polyaniline doped with transition metal salts. Synth Met 156(9):654–663

    Article  CAS  Google Scholar 

  29. Quillard S, Louarn G, Lefrant S, MacDiarmid AG (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B 50(17):12496–12508

    Article  Google Scholar 

  30. Gomes EC, Oliveira MAS (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am J Polym Sci 2(2):5–13

    Article  CAS  Google Scholar 

  31. Bernard MC, de Torresi SC, Hugot-Le Goff A (1999) In situ Raman study of sulfonate-doped polyaniline. Electrochim Acta 44(12):1989–1997

    Article  CAS  Google Scholar 

  32. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113(2):919–926

    Article  CAS  Google Scholar 

  33. Wu TM, Lin YW (2006) Doped polyaniline/multi-walled carbon nanotube composites: preparation, characterization and properties. Polymer 47(10):3576–3582

    Article  CAS  Google Scholar 

  34. Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42(4):380–384

    Article  CAS  Google Scholar 

  35. Choi HJ, Jeon IY, Kang SW, Baek JB (2011) Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization. Electrochim Acta 56(27):10023–10031

    Article  CAS  Google Scholar 

  36. Meher SK, Justin P, Ranga Rao G (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3(6):2063–2073

    Article  CAS  Google Scholar 

  37. Wang W, Hao Q, Lei W, Xia X, Wang X (2012) Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv 2(27):10268–10274

    Article  CAS  Google Scholar 

  38. Zhang Y, Li GY, Lv Y, Wang LZ, Zhang AQ, Song YH, Huang BL (2011) Electrochemical investigation of MnO2 electrode material for supercapacitors. Int J Hydrog Energy 36(18):11760–11766

    Article  CAS  Google Scholar 

  39. Li GR, Feng ZP, Zhong JH, Wang ZL, Tong YX (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43(5):2178–2183

    Article  CAS  Google Scholar 

  40. El-Enany GM, Ghanem MA, Abd El-Ghaffar MA (2010) Electrochemical deposition and characterization of poly (3, 4-ethylene dioxythiophene), poly (aniline) and their copolymer onto glassy carbon electrodes for potential use in ascorbic acid oxidation. Port Electrochim Acta 28(5):336–348

    CAS  Google Scholar 

  41. Jeong HK, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, Lee YH (2010) Enhanced electric double layer capacitance of graphite oxide intercalated by poly (sodium 4-styrensulfonate) with high cycle stability. ACS Nano 4(2):1162–1166

    Article  CAS  Google Scholar 

  42. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236

    Article  CAS  Google Scholar 

  43. Zhang H, Cao G, Wang W, Yuan K, Xu B, Zhang W, Cheng J, Yang Y (2009) Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim Acta 54(4):1153–1159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No.51302108 and No.21571084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Duan, F. & Chen, M. Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications. J Solid State Electrochem 20, 2805–2816 (2016). https://doi.org/10.1007/s10008-016-3264-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3264-x

Keywords

Navigation