Journal of Solid State Electrochemistry

, Volume 20, Issue 9, pp 2575–2580 | Cite as

Influence of cathode functional layer composition on electrochemical performance of solid oxide fuel cells

  • Antônio de Pádua Lima Fernandes
  • Eric Marsalha Garcia
  • Rubens Moreira de Almeida
  • Hosane Aparecida Taroco
  • Edyth Priscilla Campos Silva
  • Rosana Zacarias Domingues
  • Tulio Matencio
Original Paper


In this work, anode-supported solid oxide fuel cells (SOFC) were tested with a yttria-stabilized zirconia (YSZ) (8 mol% Y2O3-ZrO2)/gadolinium-doped ceria (GDC) (Ce0.9Gd 0.1O1.95) bilayer electrolyte and two lanthanum strontium cobalt ferrite (LSCF) composition as functional cathode layer: La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF 1) and La0.60Sr0.40Co0.2Fe0.8O3-δ (LSCF 2). The functional cathode layers were made of 50 % (w/w) LSCF and 50 % (w/w) GDC. Microstructural characterization was performed by scanning electron microscopy and X-ray diffraction. Electrochemical impedance spectroscopy (EIS) and power measurements were performed under oxygen and hydrogen atmospheres. The microscopy studies showed that the LSCF 2 functional layer is more uniform and adherent to the electrolyte and the cathode collector than the LSCF 1 functional layer, which has cracks, chips, and lower adhesion. The use of the LSCF 2 layer allowed an approximately 25-fold reduction in ohmic resistance (0.06 Ω cm−2) compared with the LSCF 1 layer (1.5 Ω cm−2). The power measurements showed a considerable increase in the power cell using LSCF 2 (approximately 420 mW cm−2) compared with the power cell using LSCF 1 (approximately 180 mW cm−2).


SOFC LSCF Interface Electrochemical performance Cathode Functional layer 



The authors acknowledge UFMG (Pró-Reitoria de Pesquisa), CNPq (project: 407186/2013-1 and 472767/2013-5), CAPES, FAPEMIG, and CEMIG for financial support and the Center of Microscopy at the Universidade Federal de Minas Gerais for providing the equipment and technical support for experiments involving electron microscopy.


  1. 1.
    Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z (2010) A review of integration strategies for solid oxide fuel cells. J Power Sources 195:685–702CrossRefGoogle Scholar
  2. 2.
    Zhao Y, Xia C, Jia L, Wang Z, Li H, Yu J, Li Y (2013) Recent progress on solid oxide fuel cell: lowering temperature and utilizing non-hydrogen fuels. Int J Hydrog Energy 38(36):16498–16517CrossRefGoogle Scholar
  3. 3.
    Ivers-Tiffée E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC-components. J Eur Ceram Soc 21:1805–1811CrossRefGoogle Scholar
  4. 4.
    Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. I. Performance-determining factors. J Solid State Electrochem 12:1039–1060CrossRefGoogle Scholar
  5. 5.
    Xi X, Kondo A, Kozawa T, Naito M (2016) LSCF–GDC composite particles for solid oxide fuel cells cathodes prepared by facile mechanical method. Adv Powder Technol 27:646–651CrossRefGoogle Scholar
  6. 6.
    Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. II. Electrochemical behavior vs. materials science aspects. J Solid State Electrochem 12:1367–1391CrossRefGoogle Scholar
  7. 7.
    Tsipis EV, Kharton VV (2011) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects. J Solid State Electrochem 15:1007–1040CrossRefGoogle Scholar
  8. 8.
    Adler SB (2004) Factors governing oxygen reduction reaction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843CrossRefGoogle Scholar
  9. 9.
    Setevich CF, Mogni LV, Caneiro A, Prado FD (2012) Optimum cathode configuration for IT-SOFC using La0.4Ba0.6CoO3−δ and Ce0.9Gd0.1O1.95. Int J Hydrog Energy 37:4895–4901CrossRefGoogle Scholar
  10. 10.
    McCoppin J, Young D, Reitz T, Maleszewski A, Mukhopadhyay S (2011) Solid oxide fuel cell with compositionally graded cathode functional layer deposited by pressure assisted dual-suspension spraying. J Power Sources 196:3761–3765CrossRefGoogle Scholar
  11. 11.
    Huang B, Zhu X, Nie H, Niu Y, Li Y, Cheng N (2013) Comparison of the electrochemical properties of impregnated and functionally gradient LaNi0.6Fe0.4O3−Gd0.2Ce0.8O2 composite cathodes for solid oxide fuel cell. J Power Sources 235:20–28CrossRefGoogle Scholar
  12. 12.
    Haanappel VAC, Jordan N, Mai A, Mertens J, Serra JM, Tietz F, et al. (2009) Advances in research, development, and testing of single cells at forschungszentrum jülich. J Fuel Cell Sci Technol 6:021302CrossRefGoogle Scholar
  13. 13.
    Tanner CW, Fung KZ, Virkar AV (1997) The effect of porous composite electrode structure on solid oxide fuel cell performance. J Electrochem Soc 144(1):21–30CrossRefGoogle Scholar
  14. 14.
    Rieu M, Sayers R, Laguna-Bercero MA, Skinner SJ, Lenormand P, Ansart F (2010) Investigation of graded La2NiO4+δ cathodes to improve SOFC electrochemical performance. J Electrochem Soc 157(4):B477–B480CrossRefGoogle Scholar
  15. 15.
    Woolley RJ, Skinner SJ (2014) Functionally graded composite LaNiO and LaNiO solid oxide fuel cell cathodes. Solid State Ionics 255:1–5CrossRefGoogle Scholar
  16. 16.
    Hildenbrand N, Boukamp B, Nammensma P, Blank D (2011) Improved cathode/electrolyte interface of SOFC. Solid State Ionics 192:12–15CrossRefGoogle Scholar
  17. 17.
    Hildenbrand N, Nammensma P, Blank DHA, Bouwmeester HJM, Boukamp BA (2013) Influence of configuration and microstructure on performance of La2NiO4+δ IT-SOFC cathodes. J Power Sources 238:442–453CrossRefGoogle Scholar
  18. 18.
    Dumaisnil K, Fasquelle D, Mascot M, Rolle A, Roussel P, Minaud S, et al. (2014) Synthesis and characterization of La0.6Sr0.4Co0.8Fe0.2O3 films for solid oxide fuel cell cathodes. Thin Solid Films 553:89–92CrossRefGoogle Scholar
  19. 19.
    Hwang HJ, Moon JW, Lee S, Lee EA (2005) Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. J Power Sources 145:243–248CrossRefGoogle Scholar
  20. 20.
    Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M (2005) Introduction of A-site deficiency into La0,6Sr0,4Co0,2Fe0,8O3-δ and its effect on structure and conductivity. Solid State Ionics 176:1145–1149CrossRefGoogle Scholar
  21. 21.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical properties of La1-xSrxCo1-yFey03.δ part 2. The system La1-xSrxCo0.2Fe0.803.δ. Solid State Ionics 76:273–283CrossRefGoogle Scholar
  22. 22.
    Tu HY, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0,4Sr0,6Co0,8Fe0,2O3-d (ln = La, Pr, Nd,Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281CrossRefGoogle Scholar
  23. 23.
    Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6:30–37CrossRefGoogle Scholar
  24. 24.
    Baon F, Jiabao Y, Xiaochao Y (2011) The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-δ as SOFC cathode material. Solid State Sci 13:1835–1839CrossRefGoogle Scholar
  25. 25.
    Chiba R, Tabata Y, Komatsu T, Orui H, Nozawa K, Arakawa M, et al. (2008) Property change of a LaNi0.6Fe0.4O3 cathode in the initial current loading process and the influence of a ceria interlayer. Solid State Ionics 178(31–32):1701–1709CrossRefGoogle Scholar
  26. 26.
    Dissertações e teses by autor (2014), Minas Gerais, Brazil
  27. 27.
    Santos JAF, Kleitz M, Matencio T, Domingues RZ (2012) Evaluation of the electrode/electrolyte contact quality in solid oxide fuel cells. Electrochim Acta 60:224–229CrossRefGoogle Scholar
  28. 28.
    Fu CJ, Liu QL, Chan SH, Ge XM, Pasciak G (2010) Effects of transition metal oxides on the densification of thin-film GDC electrolyte and on the performance of intermediate-temperature SOFC. Int J Hydrog Energy 35:11200–11207CrossRefGoogle Scholar
  29. 29.
    Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics 138(1–2):79–90CrossRefGoogle Scholar
  30. 30.
    Kuhna M, Hashimoto S, Sato K, Yashiro K, Mizusaki J (2013) Thermo-chemical lattice expansion in La0.6Sr0.4Co1−yFeyO3−δ. Solid State Ionics 241:12–16CrossRefGoogle Scholar
  31. 31.
    Jiang T, Wang Z, Ren B, Qiao J, Sun W, Sun K (2014) Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3 and of Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells. J Power Sources 247:858–864CrossRefGoogle Scholar
  32. 32.
    Kim J, Kim G, Moon J, Park Y, Lee W, Kobayashi K, Nagai M, Kim C (2001) Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics 143:379–389CrossRefGoogle Scholar
  33. 33.
    Barbucci A, Carpanese P, Cerisola G, Viviani M (2005) Electrochemical investigation of mixed ionic/electronic cathodes for SOFCs. Solid State Ionics 176:1753–1758CrossRefGoogle Scholar
  34. 34.
    Garcia EM, Tarôco HA, Matencio T, Domingues RZ, dos Santos JAF (2012) Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction. Int J Hydrog Energy 37:6400–6406CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Antônio de Pádua Lima Fernandes
    • 1
  • Eric Marsalha Garcia
    • 2
  • Rubens Moreira de Almeida
    • 1
  • Hosane Aparecida Taroco
    • 2
  • Edyth Priscilla Campos Silva
    • 1
  • Rosana Zacarias Domingues
    • 1
  • Tulio Matencio
    • 1
  1. 1.Department of ChemistryFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.DECEBFederal University of São João del-Rei (UFSJ)Sete LagoasBrazil

Personalised recommendations