Skip to main content
Log in

A new tavorite LiTiPO4F electrode material for aqueous rechargeable lithium ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, we demonstrate a safe, inexpensive, and stable cycle-life aqueous rechargeable Li-ion battery system using tavorite LiTiPO4F as anode and Li[Li0.2Co0.3Mn0.5]O2 as cathode in aqueous electrolyte using 2 M Li2SO4. These materials have been synthesized via a simple and an efficient method called RAPET (reaction under autogenic pressure at elevated temperature) method, and for the first time, we have evaluated the electrochemical properties of LiTiPO4F in aqueous electrolyte. Structural and morphological features have been characterized using X-ray diffraction and scanning electron microscopy techniques, and the electrochemical studies have been investigated by using cyclic voltammetry, galvanostatic charge/discharge studies, electrochemical impedance spectroscopic technique, potentiostatic intermittent titration techniques, and galvanostatic intermittent titration techniques. In galvanostatic charge/discharge studies, the capacity, cycle life, and columbic efficiency of LiTiPO4F have been tested in combination with Li [Li0.2Co0.3Mn0.5]O2 cathode. In particular, LiTiPO4F shows capacity of 82 mA h g−1, the capacity retention was maintained 90 % even after the 45th cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kraytsberg A, Ein-Eli Y (2012) Adv Energy Mater 2:922–939

    Article  CAS  Google Scholar 

  2. Sun Y-K, Chen Z, Noh H-J, Lee D-J, Jung H-G, Ren Y, Wang S, Yoon CS, Myung S-T, Amine K (2012) Nat Mater 11:942–947

    Article  CAS  Google Scholar 

  3. Wang Y, Yi J, Xia Y (2012) Adv Energy Mater 2:830–840

    Article  CAS  Google Scholar 

  4. Liu X-H, Saito T, Doi T, Okada S, Yamaki J-I (2009) J Power Sources 189:706–710

    Article  CAS  Google Scholar 

  5. Kohler J, Makihara H, Uegaito H, Inoue H, Toki M (2000) Electrochim Acta 46:59–65

    Article  CAS  Google Scholar 

  6. Wang H, Huang K, Zeng Y, Yang S, Chen L (2007) Electrochim Acta 52:3280–3285

    Article  CAS  Google Scholar 

  7. Lee J-W, Su-Il P (2004) Electrochim Acta 49:753–761

    Article  CAS  Google Scholar 

  8. Li W, Dahn JR, Wainwright DS (1994) Science 264:1115–1118

    Article  CAS  Google Scholar 

  9. Minakshi M, Nallathamby K, DRG M (2009) J Alloys Compd 479:87–90

    Article  CAS  Google Scholar 

  10. Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H (2007) Angew Chem 119:299–301

    Article  Google Scholar 

  11. Wu M-S, Lee R-H (2008) J Power Sources 176:363–368

    Article  CAS  Google Scholar 

  12. Beck F, Ruetschi P (2000) Electrochim Acta 45:2467–2482

    Article  CAS  Google Scholar 

  13. Gong Z, Yang Y (2011) Energy Environ Sci 4:3223–3242

    Article  CAS  Google Scholar 

  14. Makimura Y, Cahill LS, Iriyama Y, Goward GR, Nazar LF (2008) Chem Mater 20:4240–4248

    Article  CAS  Google Scholar 

  15. Recham N, Chotard J-N, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) Nat Mater 9:68–74

    Article  CAS  Google Scholar 

  16. Ellis BL, Makahnouk WRM, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2010) Chem Mater 22:1059–1070

    Article  CAS  Google Scholar 

  17. Tarascon J-M, Recham N, Armand M, Chotard J-N, Baranda P, Walker W, Dupont L (2010) Chem Mater 22:724–739

    Article  CAS  Google Scholar 

  18. Recham N, Chotard J-N, Jumas J-C, Laffont L, Armand M, Tarascon J-M (2010) Chem Mater 22:1142–1148

    Article  CAS  Google Scholar 

  19. Mahesh KC, Suresh GS, Venkatesha TV (2012) J Solid State Electrochem 16:3559–3571

    Article  CAS  Google Scholar 

  20. Mahesh KC, Manjunatha H, Shivashankaraiah RB, Suresh GS, Venkatesha TV (2012) J Electrochem Soc 159:A1–A8

    Article  Google Scholar 

  21. Shivashankaraiah RB, Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2012) J Solid State Electrochem 16:1279–1290

    Article  CAS  Google Scholar 

  22. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  23. Yao J, Nishimura K, Mukai T, Takasaki T, Tsutsumi K, Aguey-Zinsou K-F, Sakai T (2012) ECS Electron Lett 1:A83–A86

    Article  CAS  Google Scholar 

  24. Choi D, Kumta PN (2007) J Power Sources 163:1064–1069

    Article  CAS  Google Scholar 

  25. He W, Qian J, Cao Y, Ai X, Yang H (2012) RSC Adv 2:3423–3429

    Article  CAS  Google Scholar 

  26. Mi CH, Zhang XG, Li HL (2007) J Electroanal Chem 602:245–254

    Article  CAS  Google Scholar 

  27. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) Electrochim Acta 54:1199–1203

    Article  CAS  Google Scholar 

  28. Wu M-S, Wang M-J, Jow J-J, Yang W-D, Hsieh C-Y, Tsai H-M (2008) J Power Sources 185:1420–1424

    Article  CAS  Google Scholar 

  29. Rahman Md M, Wang J-Z, Hassan MF, Wexler D, Liu HK (2011) Adv Energy Mater 1:212–220

    Article  Google Scholar 

  30. Qiao X, Yang J, Wang Y, Chen Q, Zhang T, Liu L, Wang X (2012) J Solid State Electrochem 16:1211–1217

    Article  CAS  Google Scholar 

  31. Shivashankaraiah RB, Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2012) J Electrochem Soc 159:A1–A9

    Article  Google Scholar 

  32. Wang H, Huang H, Zeng Y, Yang S, Chen L (2007) Electrochim Acta 52:3280–3285

    Article  CAS  Google Scholar 

  33. Wang GJ, Zhao NH, Yang LC, Wu YP, Wu HQ, Holze R (2007) Electrochim Acta 52:4911–4915

    Article  CAS  Google Scholar 

  34. Kohlar J, Makihara H, Uegaito H, Inoue H, Toki M (2000) Electrochim Acta 46:59–65

    Article  Google Scholar 

  35. Wang GJ, Zhang HP, Fu LJ, Wang B, Wu YP (2007) Electrochem Commun 9:1873–1876

    Article  CAS  Google Scholar 

  36. Stojkovic I, Cvjeticanin, Pasti I, Mitric M, Mentus S (2009) Electrochem Commun 11:1512–1514

    Article  CAS  Google Scholar 

  37. Wang H, Zeng Y, Huang K, Liu S, Chen L (2007) Electrochim Acta 52:5102–5107

    Article  CAS  Google Scholar 

  38. Noerochim L, Yurwendra AO, Susanti D (2015) Ionics 1–6 doi:10.1007/s11581-015-1560-6

  39. Mahesh KC, Manjunatha H, Venkatesha TV, Suresh GS (2012) J Appl Electrochem 16:3011–3025

    CAS  Google Scholar 

  40. Liu L, Tian F, Wang X, Yang Z, Chen Q, Wang X (2012) J Solid State Electrochem 16:491–497

    Article  CAS  Google Scholar 

  41. Cui Y, Yuan Z, Bao W, Zhuang Q, Sun Z (2012) J Appl Electrochem 42:883–891

    Article  CAS  Google Scholar 

  42. Wang JG, Yang LC, Qu TQ, Wang B, Wu YP, Holze R (2010) J Solid State Electrochem 54:1199–1203

    Google Scholar 

  43. Lu D, Li W, Zuo X, Yuan Z, Huang Q (2007) J Phys Chem C 7:A-A10

    Google Scholar 

  44. Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2011) Electrochim Acta 56:1439–1446

    Article  CAS  Google Scholar 

  45. Markovsky B, Levi MD, Aurbach D (1998) Electrochim Acta 43:2287–2304

    Article  CAS  Google Scholar 

  46. Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2012) Electrochim Acta 80:269–281

    Article  CAS  Google Scholar 

  47. Levi MD, Gamolsky K, Aurbach D, Heider U, Oesten R (1992) J Electroanal Chem 477:32–40

    Article  Google Scholar 

  48. Levi MD, Levi EA, Aurbach D (1997) J Electroanal Chem 421:89–97

    Article  CAS  Google Scholar 

  49. Levi MD, Markevich E, Aurbach D (2005) J Phys Chem B 109:7420–7427

    Article  CAS  Google Scholar 

  50. Varsano F, Decker F, Masetti E, Croce F (2001) Electrochim Acta 2069–2075

  51. Wang J, Li X, Wang Z, Guo H, Huang B, Wang Z, Yan G (2015) J Solid State Electrochem 19:153–160

    Article  CAS  Google Scholar 

  52. Artuso F, Bonino F, Decker F, Lourenco A, Masetti E (2002) Electrochim Acta 47:2231–2238

    Article  CAS  Google Scholar 

  53. Malik R, Abdellahi A, Ceder G (2013) J Electrochem Soc 160:A3179–A3197

    Article  CAS  Google Scholar 

  54. Markevich E, Levi MD, Aurbach D (2005) Electroanal Chem 580:231–327

    Article  CAS  Google Scholar 

  55. Montella C (2002) J Electroanal Chem 518:61–83

    Article  CAS  Google Scholar 

  56. Han BC, Van der Ven A, Morgan D, Ceder G (2004) Electrochim Acta 49:4691–4699

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the science and engineering research board, Department of Science and Technology, New Delhi. We also thank Sri. A.V.S. Murthy, Honorary Secretary, Rashtreeya Sikshana Samithi Trust and Dr. Snehalata G Nadiger, Principal, NMKRV College For Women, Bangalore for their continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurukar Shivappa Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangaswamy, P., Suresh, G.S. & Kittappa, M.M. A new tavorite LiTiPO4F electrode material for aqueous rechargeable lithium ion battery. J Solid State Electrochem 20, 2619–2631 (2016). https://doi.org/10.1007/s10008-016-3240-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3240-5

Keywords

Navigation