Skip to main content
Log in

Direct conversion of electrodeposited nanocrystalline ε-MnO2 into LiMn2O4 by microwave calcination

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Firstly, ε-MnO2 films with good adhesion and high surface area were electrolytically deposited on platinum plates. After being soaked for 48 h in a 0.1 mol L−1 LiOH aqueous solution, these oxide films were directly converted to the LiMn2O4 spinel by microwave calcination using very short irradiation times (t ir) of 3, 4, or 5 min. As inferred from XRD data, clearly the crystalline LiMn2O4 spinel in a single phase can be obtained even at t ir = 3 min. The voltammetric profiles for all obtained Pt/LiMn2O4 electrodes presented the characteristic peaks for the lithium-ion insertion-extraction processes in the spinel structure. For the LiMn2O4 spinel obtained using t ir = 3 min, the diffusion coefficient associated to those processes was estimated as equal to 1.1 × 10−11 cm s−1. From the charge-discharge tests, the specific capacity for this material was about 80 mA h g−1 at C/10. Therefore, the proposed methodology made possible to directly produce Pt/LiMn2O4 electrodes, without the need of using conductivity enhancers or binders for the attachment of the oxide film to the current collector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Katakura K, Wada K, Kajiki Y, Yamamoto A, Ogumi Z (2009) Preparation of the electrochemically formed spinel-lithium manganese oxides. J Power Sources 189:240–247

    Article  CAS  Google Scholar 

  2. Aricó AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  3. Tucker MC, Kroeck L, Reimer JA, Cairns EJ (2002) The influence of covalence on capacity retention in metal-substituted spinels. J Electrochem Soc 149(11):A1409–A1413

    Article  CAS  Google Scholar 

  4. Hua WB, Wang SN, Guo XD, Chou SL, Yin K, Zhong BH, Dou SX (2015) Vacuum induced self-assembling nanoporous LiMn2O4 for lithium ion batteries with Superior high rate capability. J Electrochim Acta 186:253–261

    Article  CAS  Google Scholar 

  5. Pistoia G, Antonini A, Zane D, Pasquali M (1995) Synthesis of Mn spinels from different polymorphs of MnO2. J Power Sources 56:37–43

    Article  CAS  Google Scholar 

  6. Amaral FA, Bocchi N, Brocenschi RF, Biaggio SR, Rocha-Filho RC (2010) Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2− or F) for use as cathode material in lithium batteries. J Power Sources 195:3293–3299

    Article  CAS  Google Scholar 

  7. Sinha NN, Munichandraiah N (2008) Synthesis and characterization of submicron size particles of LiMn2O4 by microemulsion route. J Solid State Electrochem 12:1619–1627

    Article  CAS  Google Scholar 

  8. Dou S (2015) Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries. Ionics 21:3001–3030

    Article  CAS  Google Scholar 

  9. Helan M, Berchmans LJ, TP J, Visuvasam A, Angappan S (2010) Molten salt synthesis of LiMn2O4 using chloride–carbonate melt. Mater Chem Phys 124:439–442

    Article  CAS  Google Scholar 

  10. Park YJ, Kim JG, Kim MK, Chung HT, Kim HG (2000) Preparation of LiMn2O4 thin films by a sol–gel method. Solid State Ionics 130:203–214

    Article  CAS  Google Scholar 

  11. Guo ZP, Konstantinov K, Wang GX, Liu HK, Dou SX (2003) Preparation of orthorhombic LiMnO2 material via the sol–gel process. J Power Sources 119:221–225

    Article  Google Scholar 

  12. Yan H, Huang X, Chen L (1999) Microwave synthesis of LiMn2O cathode material. J Power Sources 81:647–650

    Article  Google Scholar 

  13. Nakayama M, Watanabe K, Ikuta H, Uchimoto Y, Wakihara M (2003) Grain size control of LiMn2O4 cathode material using microwave synthesis method. Solid State Ionics 164:35–42

    Article  CAS  Google Scholar 

  14. Balaji S, Mutharasu D, Sankara Subramanian N, Ramanathan K (2009) A review on microwave synthesis of electrode materials for lithium-ion batteries. Ionics 15:765–777

    Article  CAS  Google Scholar 

  15. Silva JP, Biaggio SR, Bocchi N, Rocha-Filho RC (2014) Practical microwave-assisted solid-state synthesis of the spinel LiMn2O4. Solid State Ionics 268:42–47

    Article  CAS  Google Scholar 

  16. Ferracin LC, Amaral FA, Bocchi N (2000) Characterization and electrochemical performance of the spinel LiMn2O4 prepared from ε-MnO2. Solid State Ionics 130:215–220

    Article  CAS  Google Scholar 

  17. Kim JH, Ayalasomayajula T, Gona V, Choi D (2008) Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J Power Sources 183:366–369

    Article  CAS  Google Scholar 

  18. Hassan S, Suzuki M, El-Moneim AA (2014) Synthesis of MnO2-chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. J Power Sources 246:68–73

    Article  CAS  Google Scholar 

  19. Xiao J, Yang S, Wan L, Xiao F, Wang S (2014) Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. J Power Sources 245:1027–1034

    Article  CAS  Google Scholar 

  20. Quan Z, Ohguchi S, Kawase M, Tanimura H, Sonoyama N (2013) Preparation of nanocrystalline LiMn2O4 thin film by electrodeposition method and its electrochemical performance for lithium battery. J Power Sources 244:375–381

    Article  CAS  Google Scholar 

  21. Wei Q, Wang X, Yang X, Shu H, Ju B, Hu B, Song Y (2012) The effects of crystal structure of the precursor MnO2 on electrochemical properties of spinel LiMn2O4. J Solid State Electrochem 16:3651–3659

    Article  CAS  Google Scholar 

  22. Okubo M, Mizuno Y, Yamada H, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2010) Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 4:741–752

    Article  CAS  Google Scholar 

  23. Manthiram A, Nazri GA, Pistoia G (2009) Lithium batteries science and technology. Springer New York

  24. Pistoia G, Wang G (1993) Aspects of the Li+ insertion into LixMn2O4 for 0 < x < 1. Solid State Ionics 66:135–142

    Article  CAS  Google Scholar 

  25. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. John Wiley & Sons, New York

    Google Scholar 

  26. Julien C, Haro-Poniatowski E, Camacho-Lopez MA, Escobar-Alarcon L, Jimenez-Jarquin J (2000) Growth of LiMn2O4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries. Mater Sci Eng B 72:36–46

    Article  Google Scholar 

  27. Kim WK, Han DW, Ryu WH, Lim SJ, Eom JY, Kwon HS (2014) Effects of Cl doping on the structural and electrochemical properties of high voltage LiMn1.5Ni0.5O4 cathode materials for Li-ion batteries. J Alloys Compd 592:48–52

    Article  CAS  Google Scholar 

  28. Dell’Era A, Pasquali M (2009) Comparison between different ways to determine diffusion coefficient and by solving Fick’s equation for spherical coordinates. J Solid State Electrochem 13:849–859

    Article  Google Scholar 

  29. Xie J, Kohno K, Matsumura T, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2008) Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition. Electrochim Acta 54:376–381

    Article  CAS  Google Scholar 

  30. Guo D, Chang Z, Li B, Tang H, Yuan XZ, Wang H (2013) Synthesis of high-purity LiMn2O4 with enhanced electrical properties from electrolytic manganese dioxide treated by sulfuric acid-assisted hydrothermal method. J Solid State Electrochem 17:2849–2856

    Article  CAS  Google Scholar 

  31. Morcrette M, Barboux P, Perrière J, Brousse T, Traverse A, Boilot JP (2001) Non-stoichiometry in LiMn2O4 thin films by laser ablation. Solid State Ionics 138:213–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support and scholarships from the Brazilian funding agencies CNPq and CAPES are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia R. Biaggio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoglio, R.A., Irikura, K., Biaggio, S.R. et al. Direct conversion of electrodeposited nanocrystalline ε-MnO2 into LiMn2O4 by microwave calcination. J Solid State Electrochem 20, 2019–2027 (2016). https://doi.org/10.1007/s10008-016-3212-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3212-9

Keywords

Navigation