Skip to main content
Log in

Waste particleboard-derived nitrogen-containing activated carbon through KOH activation for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple and scalable method to fabricate enriched-nitrogen activated carbons (3.11–1.19 wt.%) by direct heat treatments of waste particleboards for high-performance supercapacitors was presented in this paper. The effects of the activation temperature on the textural properties and capacitive performance of the nitrogen-containing activated waste particleboard carbons (N-AWPCs) were analyzed. The N-AWPC prepared at 800 °C (N-AWPC800) show high specific surface areas, suitable pore size distributions and nitrogen content, all of which are essential for achieving high electrochemical performances as supercapacitor electrodes. The symmetric supercapacitor based on N-AWPC800 offers a specific capacitance of 263 and 119 F g−1 at a current density of 0.05 A g−1 use 7 M KOH and 1 M tetraethylammonium tetrafluoroborate in propylene carbonate (TEMA-BF4/PC) as the electrolyte, respectively. The supercapacitor delivers high energy densities of 9.1–7.9 Wh kg−1 under the power outputs of 15.6–2855.3 W kg−1 in 7 M KOH and of 25.8–18.9 Wh kg−1 under the power outputs of 18.6–3894.4 W kg−1 in 1 M TEMA-BF4/PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  Google Scholar 

  2. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  3. Chen W, Rakhi R, Hu L, Xie X, Cui Y, Alshareef H (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172

    Article  CAS  Google Scholar 

  4. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763

    Article  CAS  Google Scholar 

  5. Dhibar S, Sahoo S, Das C (2013) Fabrication of transition-metal-doped polypyrrole/multiwalled carbon nanotubes nanocomposites for supercapacitor applications. J Appl Polym Sci 130(1):554–562

    Article  CAS  Google Scholar 

  6. Chou TC, Huang CH, Doong RA, Hu CC (2013) Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors. J Mater Chem A 1(8):2886–2895

    Article  CAS  Google Scholar 

  7. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5(3):480–499

    Article  CAS  Google Scholar 

  8. Simon P, Gogotsi Y (2012) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46(5):1094–1103

    Article  Google Scholar 

  9. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    Article  CAS  Google Scholar 

  10. Zhou DD, Li WY, Dong XL, Wang YG, Wang CX, Xia YY (2013) A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. J Mater Chem A 1(29):8488–8496

    Article  CAS  Google Scholar 

  11. Liu Y, Zhang B, Yang Y, Chang Z, Wen Z, Wu Y (2013) Polypyrrole-coated alpha-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J Mater Chem A 1(43):13582–13587

    Article  CAS  Google Scholar 

  12. Alabadi A, Yang X, Dong Z, Li Z, Tan B (2014) Nitrogen-doped activated carbons derived from a co-polymer for high supercapacitor performance. J Mater Chem A 2(30):11697–11705

    Article  CAS  Google Scholar 

  13. Liu W, Yan X, Chen J, Feng Y, Xue Q (2013) Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5(13):6053–6062

    Article  CAS  Google Scholar 

  14. Chen L (2014) Look east for the future. Inter Wood Ind 12:19–21

    Google Scholar 

  15. Sun Q, Qi YJ, Wang QZ (2014) Study on production situation and processing equipment of oriented Strand Board in China. J Anhui Agri Sci 42(26):9000–9001

    Google Scholar 

  16. Fan X, Zhang L, Zhang G, Shu Z, Shi J (2013) Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 61:423–430

    Article  CAS  Google Scholar 

  17. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22(45):5202–5206

    Article  CAS  Google Scholar 

  18. Xu B, Hou S, Cao G, Wu F, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem 22(36):19088–19093

    Article  CAS  Google Scholar 

  19. Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194

    Article  CAS  Google Scholar 

  20. Wan L, Wang J, Xie L, Sun Y, Li K (2014) Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl Mater Interfaces 6(17):15583–15596

    CAS  Google Scholar 

  21. Jiang J, Bao L, Qiang Y, Xiong Y, Chen J, Guan S, Chen J (2015) Sol-gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors. Electrochim Acta:229–236

  22. Wu J, Zhang D, Wang Y, Hou B (2013) Electrocatalytic activity of nitrogen-doped graphene synthesized via a one-pot hydrothermal process towards oxygen reduction reaction. J Power Sources 227:185–190

    Article  CAS  Google Scholar 

  23. Jin Z, Zhang Z, Wei X, Jing Y, Han G, Si W, Zhuo S (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75

    Article  Google Scholar 

  24. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17:1241–1247

    Article  CAS  Google Scholar 

  25. Wu C, Wang X, Ju B, Jiang L, Wu H, Zhao Q, Yi L (2013) Supercapacitive performance of nitrogen-enriched carbons from carbonization of polyaniline/activated mesocarbon microbeads. J Power Sources 227:1–7

    Article  CAS  Google Scholar 

  26. Sun G, Long D, Liu X, Qiao W, Zhan L, Liang X, Ling L (2011) Asymmetric capacitance response from the chemical characteristics of activated carbons in KOH electrolyte. J Electroanal Chem 659(2):161–167

    Article  CAS  Google Scholar 

  27. Salinas-Torres D, Shiraishi S, Morallón E, Cazorla-Amorós D (2015) Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon 82:205–213

    Article  CAS  Google Scholar 

  28. Wu YP, Holze R, Rahm E (2002) Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochim Acta 47(21):3491–3507

    Article  CAS  Google Scholar 

  29. Candelaria SL, Garcia BB, Liu D, Cao G (2012) Nitrogen modification of highly porous carbon for improved supercapacitor performance. J Mater Chem 22(19):9884–9889

    Article  CAS  Google Scholar 

  30. Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18(9):2318–2326

    Article  CAS  Google Scholar 

  31. Xu B, Hou S, Zhang F, Cao G, Chu M, Yang Y (2014) Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors. J Electroanal Chem 712:146–150

    Article  CAS  Google Scholar 

  32. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58

    Article  CAS  Google Scholar 

  33. Hao Q, Xia X, Lei W, Wang W, Qiu J (2015) Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 81:552–563

    Article  CAS  Google Scholar 

  34. Burke A (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta 53(3):1083–1091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by State Forestry Administration, project 201204807: the study on the technology and mechanism of the activated carbon electrode from waste hard board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Juan Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, TX., Jin, XJ. Waste particleboard-derived nitrogen-containing activated carbon through KOH activation for supercapacitors. J Solid State Electrochem 20, 2029–2036 (2016). https://doi.org/10.1007/s10008-016-3209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3209-4

Keywords

Navigation