Skip to main content
Log in

Preparation of high specific surface area composite carbon cryogels from self-assembly of graphene oxide and resorcinol monomers for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three-dimensional grapheme-doped carbon cryogels (CCs) with high specific surface area have been prepared via the self-assembly of graphene oxide (GO) sheets and resorcinol (R)-formaldehyde (F) monomers. The porosity of the composite CCs can be regulated from high mesoporosity to microporosity by adjusting the mass ratio of GO sheets to RF monomers. When the loading amount of GO sheets is 1.3 wt.% in the precursor mixture, the specific surface area of the resulting composite CCs is up to 1178 m2 g−1, which is much higher than that of the neat RF CCs (766 m2 g−1). Furthermore, the as-prepared composite CC electrode displays a high specific capacitance (205 F g−1 at 1.0 mV s−1) and superior rate capability compared to the neat RF CCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Lu XH, Yu MH, Zhai T, Wang GM, Xie SL, Liu TY, Liang CL, Tong YX, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633

    Article  CAS  Google Scholar 

  3. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  4. Stoller MD, Park S, Zhu YW, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  5. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667

    Article  CAS  Google Scholar 

  6. ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903

    Article  CAS  Google Scholar 

  7. Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon 42:169–175

    Article  CAS  Google Scholar 

  8. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158:784–788

    Article  CAS  Google Scholar 

  9. Halama A, Szubzda B, Pasciak G (2010) Carbon aerogels as electrode material for electrical double layer supercapacitors—synthesis and properties. Electrochim Acta 55:7501–7505

    Article  CAS  Google Scholar 

  10. Liu NP, Shen J, Liu D (2013) Activated high specific surface area carbon aerogels for EDLCs. Microporous Mesoporous Mater 167:176–181

    Article  CAS  Google Scholar 

  11. Lee YJ, Kim GP, Bang Y, Yi J, Seo JG, Song IK (2014) Activated carbon aerogel containing graphene as electrode material for supercapacitor. Mater Res Bull 50:240–245

    Article  CAS  Google Scholar 

  12. Fang BZ, Binder L (2006) A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J Power Sources 163:616–622

    Article  CAS  Google Scholar 

  13. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, SatcherJr JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069

    Article  CAS  Google Scholar 

  14. Meng FC, Zhang XT, Xu B, Yue SF, Guo H, Luo YJ (2011) Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels. J Mater Chem 21:18537–18539

    Article  CAS  Google Scholar 

  15. Lee YJ, Park HW, Kim GP, Yi J, Song IK (2013) Supercapacitive electrochemical performance of graphene-containing carbon aerogel prepared using polyethyleneimine-modified graphene oxide. Curr Appl Phys 13:945–949

    Article  Google Scholar 

  16. Qian YQ, Ismail IM, Stein A (2014) Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon 68:221–231

    Article  CAS  Google Scholar 

  17. Andreas HA, Lussier K, Oickle AM (2009) Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors. J Power Sources 187:275–283

    Article  CAS  Google Scholar 

  18. Luo JY, Tung VC, Koltonow AR, Jang HD, Huang J (2012) Graphene oxide based conductive glue as a binder for ultracapacitor electrodes. J Mater Chem 22:12993–12996

    Article  CAS  Google Scholar 

  19. Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  CAS  Google Scholar 

  20. HummersJr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  21. Lee JW, Ko JM, Kim JD (2012) Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochim Acta 85:459–466

    Article  CAS  Google Scholar 

  22. Du X, Guo P, Song HH, Chen XH (2010) Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim Acta 55:4812–4819

    Article  CAS  Google Scholar 

  23. Wei G, Miao YE, Zhang C, Yang Z, Liu ZY, Tjiu WW, Liu TX (2013) Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. ACS Appl Mater Interfaces 5:7584–7591

    Article  CAS  Google Scholar 

  24. Jiang SF, Zhang ZA, Qu YH, Wang XW, Li Q, Lai YQ, Li J (2014) Activated carbon aerogels with high bimodal porosity for lithium/sulfur batteries. J Solid State Electrochem 18:545–551

    Article  CAS  Google Scholar 

  25. Chen Y, Zhang X, Zhang HT, Sun XZ, Zhang DC, Ma YW (2012) High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation. RSC Adv 2:7747–7753

    Article  CAS  Google Scholar 

  26. Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  27. Xu XT, Pan LK, Liu Y, Lu T, Sun Z, Chua DHC (2015) Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci Rep 5:1–9

    Google Scholar 

  28. Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao GZ (2007) Coherent carbon cryogel−ammonia borane nanocomposites for H2 storage. J Phys Chem B 111:7469–7472

    Article  CAS  Google Scholar 

  29. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  30. Bard AJ, Abruna HD, Chidsey CE, Faulkner LR, Feldberg SW, Itaya K, Majda M, Melroy O, Murray RW (1993) The electrode/electrolyte interface—a status report. J Phys Chem 97:7147–7173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports by the National Natural Science Foundation of China (Nos. 51402101 and 51472083), Hunan Provincial Natural Science Foundation of China (14JJ3059), National Innovation Experiment Program for University Students of Hunan University, and Growth Scheme for Young Teachers of Hunan University (No. 531107040185) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Xh., Zhang, Xf., Yi, Sq. et al. Preparation of high specific surface area composite carbon cryogels from self-assembly of graphene oxide and resorcinol monomers for supercapacitors. J Solid State Electrochem 20, 1793–1802 (2016). https://doi.org/10.1007/s10008-016-3196-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3196-5

Keywords

Navigation