Skip to main content
Log in

Electrochemical dissolution of aluminium in electrocoagulation experiments

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Six experiments are presented to highlight important features of aluminium dissolution when used in electrocoagulation procedure employed to remove oily contaminations from water. First, using a common oil-in-water emulsion: diluted milk, we show that the electrochemically generated coagulant ions are active only in the first few seconds following their generation—hence, the electrocoagulation cells’ construction should promote the mixing of the nascent Al colloid with the water phase. For this reason, the use of the narrow-gap cells is suggested. Second, in experiments with Al-Al electrode pairs and dilute, neutral, unbuffered, aqueous solutions we (i) estimate the maximum amount of Al dissolution on the cathode and (ii) show how the rate of Al dissolution changes with frequency if the cell voltage polarity is alternating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Everett DH (1988) Basic principles of colloid science. The Royal Society of Chemistry, London, p. ch.9

    Google Scholar 

  2. Abrantes LM (2012) In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Heidelberg, p. 294

    Google Scholar 

  3. Mollah MYA, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater 84:29–41

    Article  CAS  Google Scholar 

  4. Vepsäläinen M (2012) Electrocoagulation in the treatment of industrial waters and wastewaters. Thesis, VTT Technical Research Centre of Finland, Espoo, Finland

  5. Sahu O, Mazumdar B, Chaudhari PK (2014) Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res Int 21:2397–2413

    Article  CAS  Google Scholar 

  6. Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90:1663–1679

    Article  CAS  Google Scholar 

  7. Duana J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interf Sci 100–102:475–502

    Article  Google Scholar 

  8. Canizares P, Martinez F, Jimenez C, Saez C, Rodrigo MA (2008) Coagulation and electrocoagulation of oil-in-water emulsions. J Hazard Mater 151:44–51

    Article  CAS  Google Scholar 

  9. Water quality – Determination of the chemical oxygen demand, ISO-6060: 1989

  10. Bensadok K, Benammar S, Lapicque F, Nezzal G (2008) Electrocoagulation of cutting oil emulsions using aluminium plate electrodes. J Hazard Mater 152:423–430

    Article  CAS  Google Scholar 

  11. Black AP, Buswell AM, Eidsness FA, Black AL (1957) Review of the Jar Test, Journal (American Water Works Association) 49: 1414, stable URL: http://www.jstor.org/stable/41254753

  12. Pajkossy T, Fekete É, Cserfalvi T, Lengyel B (2016) Electrocoagulation: an electrochemical process for water clarification. J Electrochem Sci Technol. doi:10.5599/jese.218

    Google Scholar 

  13. Khemis M, Leclerc JP, Tanguy G, Valentin G, Lapicque F (2006) Treatment of industrial liquid wastes by electrocoagulation: experimental investigations and an overall interpretation model. Chem Eng Sci 61:3602–3609

    Article  CAS  Google Scholar 

  14. Khemis M, Tanguy G, Leclerc JP, Valentin G, Lapicque F (2005) Electrocoagulation for the treatment of oil suspensions: relation between the rates of electrode reactions and the efficiency of waste removal. Process Saf Environ Prot 83(B1):50–57

    Article  CAS  Google Scholar 

  15. Attour A, Touati M, Tlili M, Ben Amor M, Lapicque F, Leclerc JP (2014) Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep Purif Technol 123:124–129

    Article  CAS  Google Scholar 

  16. Caldwell BP, Albano VJ (1939) Rate of solution of zinc and aluminum while cathodic. Trans Electrochem Soc 76:271–285. doi:10.1149/1.3500282

    Article  Google Scholar 

  17. van de Ven EPGT, Koelmans H (1976) The cathodic corrosion of aluminum. J Electrochem Soc 123:143–144

    Article  Google Scholar 

  18. Despić AR, Radošević J, Dabić P, Kliškić M (1990) Abnormal yields of hydrogen and the mechanism of its evolution during cathodic polarization of aluminum. Electrochim Acta 35:1743–1746

    Article  Google Scholar 

  19. Moon SM, Sl P (1997) The corrosion of pure aluminium during cathodic polarization in aqueous solutions. Corros Sci 39:399–408

    Article  CAS  Google Scholar 

  20. Picard T, Cathalifaud-Feuillade G, Mazet M, Vandensteendam C (2000) Cathodic dissolution in the electrocoagulation process using aluminium electrodes. J Environ Monit 2:77–80

    Article  CAS  Google Scholar 

  21. Mouedhen G, Feki M, Wery MDP, Ayedi HF (2007) Behavior of aluminum electrodes in electrocoagulation process. J Hazard Mater 150:124–135

    Article  Google Scholar 

  22. Mechelhoff M, Kelsall GH, Graham NJG (2013) Super-faradaic charge yields for aluminium in neutral aqueous solutions. Chem Eng Sci 95:353–359

    Article  CAS  Google Scholar 

  23. Canizares P, Carmona M, Lobato J, Martınez F, Rodrigo MA (2005) Electrodissolution of aluminum electrodes in electrocoagulation processes. Ind Eng Chem Res 44:4178–4185

    Article  CAS  Google Scholar 

  24. Uhlig HH (1963) Corrosion handbook. Wiley, New York, p. 54

    Google Scholar 

Download references

Acknowledgments

Financial support of the National Research, Technology and Innovation Office of the Hungarian government through projects KMR_12-1-2012-0386 and OTKA-K-112034 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Pajkossy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekete, É., Lengyel, B., Cserfalvi, T. et al. Electrochemical dissolution of aluminium in electrocoagulation experiments. J Solid State Electrochem 20, 3107–3114 (2016). https://doi.org/10.1007/s10008-016-3195-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3195-6

Keywords

Navigation