Еlectrochemical properties of poly-3,4-ethylenedioxythiophene:polystyrene sulfonate/manganese dioxide composite electrode material

Abstract

Electrochemical properties of a composite material based on PEDOT:PSS and MnO2 were investigated. The composite was synthesized by spontaneous redox reaction between reduced fragments of PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) and permanganate ions. PEDOT:PSS/MnO2 composite dispersion can be drop-cast both on rigid and flexible, conducting and non-conducting substrates. Electrochemical studies of PEDOT:PSS/MnO2 electrodes were performed in 0.1 M LiClO4 aqueous electrolyte. The specific capacity values of the composite were 46 and 33 F g−1 at 10 and 50 mV s−1, respectively. Capacity retention after 1000 galvanostatic charge-discharge cycles was 73 %. The morphology of the material was investigated by SEM; the oxidation state of manganese in oxide was characterized by XPS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Okuzaki H, Suzuki H, Ito T (2009) J Phys Chem B 113:11378–11383

    CAS  Article  Google Scholar 

  2. 2.

    Cuentas Gallegos AK, Rincón ME (2006) J Power Sources 162:743–747

    CAS  Article  Google Scholar 

  3. 3.

    Hong W, Xu Y, Lu G, Li C, Shi G (2008) Electrochem Commun 10:1555–1558

    CAS  Article  Google Scholar 

  4. 4.

    Wang Z, Bramnik N, Roy S, Di Benedetto G, Zunino JL, Mitra SJ (2013) J Power Sources 237:210–214

    CAS  Article  Google Scholar 

  5. 5.

    Su Z, Yang C, Xu C, Wu H, Zhang Z, Liu T, Zhang C, Yang Q, Li B, Kang F (2013) J Mater Chem A 1:12432–12440

    CAS  Article  Google Scholar 

  6. 6.

    Yan D, Liu Y, Li Y, Zhuo R, Wu Z, Ren P, Li S, Wang J, Yan P, Geng Z (2014) Mater Lett 127:53–55

    CAS  Article  Google Scholar 

  7. 7.

    Jalili R, Razal JM, Wallace GG (2012) J Mater Chem 22:25174–25182

    CAS  Article  Google Scholar 

  8. 8.

    Liu FJ (2008) J Power Sources 182:383–388

    CAS  Article  Google Scholar 

  9. 9.

    Liu R, Duay J, Lee SB (2010) ACS Nano 4:4299–4307

    CAS  Article  Google Scholar 

  10. 10.

    Tolstopjatova EG, Eliseeva SN, Nizhegorodova AO, Kondratiev VV (2015) Electrochim Acta 173:40–49

    CAS  Article  Google Scholar 

  11. 11.

    Tolstopjatova EG, Kondratiev VV, Eliseeva SN (2015) J Solid State Electrochem 19:2951–2959

    CAS  Article  Google Scholar 

  12. 12.

    Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) ACS Nano 4:3889–3896

    CAS  Article  Google Scholar 

  13. 13.

    Hernandez-Labrado GR, Contreras-Donayre RE, Collazos-Castro JE, Polo JL (2011) J Electroanal Chem 659:201–204

    CAS  Article  Google Scholar 

  14. 14.

    Oostra A, Van Den Bos K, Blom P, Michels J (2013) J Phys Chem B 117:10929–10935

    CAS  Article  Google Scholar 

  15. 15.

    Ujvári M, Gubicza J, Kondratiev V, Szekeres KJ, Láng GG (2015) J Solid State Electrochem 19:1247–1252

    Article  Google Scholar 

  16. 16.

    Li Z, Mi Y, Liu X, Liu S, Yang S, Wang J (2011) J Mater Chem 21:14706–14711

    CAS  Article  Google Scholar 

  17. 17.

    Jiang H, Ma J, Li C (2012) J Mater Chem 22:16939–16942

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank V.D. Kalganov for the SEM measurements in the Interdisciplinary Resource Centre for Nanotechnology of Saint Petersburg State University. We also thank Resource Centre of Physical methods of surface investigations of Saint Petersburg State University for providing XPS analysis. The financial support from the Russian Foundation for Basic Research (grant no. 16-03-00457 A) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veniamin V. Kondratiev.

Additional information

This paper is dedicated to Prof. Gyӧrgy Inzelt, a distinguished Hungarian electrochemist, on his 70th birthday anniversary. Professor G. Inzelt is interested and involved in many aspects of modern electrochemistry, in particular, electrochemistry of conducting polymers. His contribution to electrochemistry of conducting polymers stimulated many other contemporary researches in this area.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.I., Eliseeva, S.N., Tolstopjatova, E.G. et al. Еlectrochemical properties of poly-3,4-ethylenedioxythiophene:polystyrene sulfonate/manganese dioxide composite electrode material. J Solid State Electrochem 20, 3209–3212 (2016). https://doi.org/10.1007/s10008-016-3194-7

Download citation

Keywords

  • Conducting polymers
  • Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
  • Composite electrode materials
  • Manganese dioxide
  • Electrochemical properties