Skip to main content
Log in

Casting of poly (vinyl alcohol)/glycidyl methacrylate reinforced with titanium dioxide nanoparticles for proton exchange fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Gamma irradiation was used for cross-linking poly (vinyl alcohol) (PVA) and glycidyl methacrylate (GMA) mixtures of different compositions. Specifically, 0.5 wt% titanium dioxide (TiO2) nanoparticles were added and blended well with the casting mixture prior to exposure to the irradiation dose. Next, 10 kGy was found to be the optimum dose for achieving the desired physical and chemical properties of the membrane. Characterizations of the cast membranes were carried out by Fourier transformer infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and positron annihilation lifetime spectroscopy (PALS). The properties of the membrane were also characterized by ion exchange capacity (IEC), water uptake, and tensile strength and were assessed in relation to application in proton exchange membrane fuel cells (PEMFCs). A maximum proton conductivity of 7.3 × 10−2 S cm−1 was obtained for the membrane having 20 % GMA, 80 % PVA, and 0.5 % TiO2, and its activity and durability in a membrane electrode assembly (MEA) were compared to those of a commercial Nafion® 1350.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wieser C (2004) Novel polymer electrolyte membranes for automotive applications requirements and benefits. Fuel Cells 4:245–250

    Article  CAS  Google Scholar 

  2. Devanathan R (2008) Recent developments in proton exchange membranes for fuel cells. Energ Environ Sci 1:101–119

    Article  CAS  Google Scholar 

  3. Jagur-Grodizinski J (2007) Polymeric materials for fuel cells: concise review of recent studies. Polym Adv Technol 18:785–799

    Article  Google Scholar 

  4. Huang YF, Kannan AM, Chang CS, Lin CW (2011) Development of gas diffusion electrodes for low relative humidity proton exchange membrane fuel cells. Int J Hydrog Energy 36:2213–2220

    Article  CAS  Google Scholar 

  5. Maria TMC, Carvalho RA, Sobral PJA, Habitante AMBQ, Solorza-Feria J (2008) The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. Food Eng J 87:191–199

    Article  CAS  Google Scholar 

  6. Mendieta-Taboada OWM, Sobral PJA, Carvalho RA, Habitante AMBQ (2008) Thermomechanical properties of biodegradable films based on blends of gelatin and poly(vinyl alcohol). Food Hydrocoll 22:1485–1492

    Article  CAS  Google Scholar 

  7. Silva GGD, Sobral PJA, Carvalho RA, Bergo PVA, Taboada OWM, Habitante AMQB (2008) Biodegradable films based on blends of gelatin and poly (vinyl alcohol): effect of PVA type or concentration on some physical properties of films. Polymer Environ J 16:276–285

    Article  CAS  Google Scholar 

  8. Alves PMA, Carvalho RA, Moraes ICF, Luciano CG, Bittante AMQB, Sobral PJA (2011) Development of films based on blends of gelatin and poly(vinyl alcohol) cross linked with glutaraldehyde. Food Hydrocoll 25:1751–1757

    Article  CAS  Google Scholar 

  9. Chauhan SG, Guleria L, Sharma R (2005) Synthesis, characterization metal ion sorption studies of graft copolymers of cellulose with glycidyl 15 16 methacrylate and some comonomers. Cellulose 12:97–110

    Article  CAS  Google Scholar 

  10. Jeon MY, Park KY, Kim CK (2008) Performance changes of composite 20 membranes prepared from various glycidyl methacrylate derivatives and their mixtures. J Membr Sci 308:87–95

    Article  CAS  Google Scholar 

  11. Sambandam S, Ramani V (2007) SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells. J Power Sources 170:259–267

    Article  CAS  Google Scholar 

  12. Wu H, Cao Y, Li Z, He G, Jiang Z (2015) Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells. J Power Sources 273:544–553

    Article  CAS  Google Scholar 

  13. Chun-Chen Y, Yingjeng JL, Tzong-Horng L (2011) Preparation of novel poly(vinyl alcohol)/SiO2 nanocomposite membranes by a sol–gel process and their application on alkaline DMFCs. Desalination 276:366–372

    Article  Google Scholar 

  14. Chen J, Maekawa Y, Asano M, Yoshida M (2007) Double crosslinked Poly ether ether ketone-based polymer electrolyte membranes prepared by radiation and thermal crosslinking techniques. Polymer 48:6002–6009

    Article  CAS  Google Scholar 

  15. Vankelecom IFJ, DeSmet K, Gevers LEM, Jacobs PA (2005) in vol. eds.: Schafer AI, Fane AG, Waite TD, Nanofiltration: Principles and Applications, Elsevier, Oxford pp. 33–65

  16. Vandezande P, Geversz LEM, Jacobs PA, Vankelecom IFJ (2009) Preparation parameters influencing the performance of SRNF membranes cast from polyimide solutions via SEPPI. Sep Purif Technol 66:104–110

    Article  CAS  Google Scholar 

  17. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. J Polymer Testing 21:665–674

    Article  CAS  Google Scholar 

  18. Kim M, Saito K (2000) Radiation-induced graft polymerization and sulfonation of glycidyl methacrylate on to porous hollow-fiber membranes with different pore sizes. Radiat Phys Chem J 57:167–172

    Article  CAS  Google Scholar 

  19. Kim DS, Park HB, Rhim JW, Lee YM (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulphonic acid groups for direct fuel cell application. J Membr Sci 240:37–48

    Article  CAS  Google Scholar 

  20. Rouilly M, Kotz ER, Hans O, Scherer GG, Chapiro A (1993) Proton exchange membrane prepared by simultaneous radiation grafting of styrene onto Teflon 46 47 FEP, films synthesis and characterization. J Membr Sci 81:89

    Article  CAS  Google Scholar 

  21. Olsen JV, Kirkegaard P, Pedersen NJ, Eldrup M (2007) PALS fit: a new program for the evaluation of positron lifetime spectra. Physica Status Solidi C 4:4004

    Article  CAS  Google Scholar 

  22. Walsby N, Paronen M, Juhanoja J, Sundhoulm F (2001) Sulfonation of styrene grafted poly (vinylidene fluoride) films. J Appl Polym Sci 81:1572–1580

    Article  CAS  Google Scholar 

  23. Jie-Cheng T, Lin C-K (2011) Effect of PTFE content in gas diffusion layer based on Nafion/PTFE membrane for low humidity proton exchange membrane fuel cell. J Taiwan Inst Chem Eng 42:945–951

    Article  Google Scholar 

  24. Ulaganathan M, Pethaiah SS, Rajendran S (2011) Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Mater Chem Phys 129:471–476

    Article  CAS  Google Scholar 

  25. Li Z, Su G, Wang X, Gao D (2005) Micro-porous P (VDF-co-HFP) –based polymer electrolyte filled with Al2O3 nanoparticles. Solid State Ionics 176:1903–1908

    Article  CAS  Google Scholar 

  26. Abdel-Hady EE, El-Toony MM, Abdel-Hamed MO (2013) Grafting of glycidyl methacrylate/styrene onto poly vinyldine fluoride membranes for proton exchange fuel cell. Electrochim Acta 103:32–37

    Article  CAS  Google Scholar 

  27. Lu JL, Fang QH, Li SL, Jiang SP (2013) Novel phosphotungstic acid 42 43 impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells. J Membr Sci 427:101–107

    Article  CAS  Google Scholar 

  28. Xi Y, Frost RL, He H, Kloprogge T, Bostrom T (2005) Modification of wyoming montmorillonite surfaces using a cationic surfactant. Langmuir 21:8675–8680

    Article  CAS  Google Scholar 

  29. Jean YC, PE Mallon, Schrader DM (2003) Principles and applications of positron and positronium chemistry. Eds.; World Sci. Pub.: Singapore

  30. Jean YC, Chen H, Zhang S, Chen H, Lee LJ, Awad S, Huang J, Lau CH, Wang H, Li F, Chung T-S (2011) Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy. J Phys Conf Ser 262:012027

    Article  Google Scholar 

  31. Xu C, Cao Y, Kumar R, Wu X, Wang X, Scott K (2011) A poly benzimidazole /sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Mater Chem 21:11359

    Article  CAS  Google Scholar 

  32. Xu C, Liu X, Cheng J, Scott K (2015) A polybenzimidazole /ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Power Sources 274:922–927

    Article  CAS  Google Scholar 

  33. Callister WD (2007) Materials science and engineering: an introduction, 7th edn. John Wiley & Sons, New York

    Google Scholar 

  34. Kim NH, Mishra AK, Kim D, Lee JH (2015) Synthesis of sulfonated poly(ether ether ketone)/layered double hydroxide nanocomposite membranes for fuel cell applications. Chem Eng J 272:119–127

    Article  CAS  Google Scholar 

  35. Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS (2008) Mechanism of tetra alkyl ammonium head group Degradation in Alkaline Fuel Cell Membranes. J Phys Chem C 112:3179–3182

    Article  CAS  Google Scholar 

  36. Ong AL, Saad S, Lana R, Goodfellow RJ, Tao S (2011) Anionic membrane and ionomer based on poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline membrane fuel cells. J Power Sources 196:8272–8279

    Article  CAS  Google Scholar 

  37. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  38. Bauer B, Jones DJ, Roziere J, Tchicaya L, Alberti G, Casciola M, Massinelli L, Peraio A, Besse S, Ramunni E (2000) Electrochemical characterisation of sulfonated polyetherketone membranes. J New Mater Electrochem Syst 3:93–98

    CAS  Google Scholar 

  39. Yu J, Matsuura T, Yoshikawa Y, Islam M, Hori M (2005) Lifetime behavior of a PEM fuel cell with low humidification of feed stream. Phys Chem Chem Phys 7:373–378

    Article  CAS  Google Scholar 

  40. Chen J, Asano M, Maekawa Y, Yoshida M (2008) Fuel cell performance of poly ether ether ketone-based polymer electrolyte membranes prepared by a two-step grafting method. J Membr Sci 319:1–4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the STDF of Egypt (ID220) for financially supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. El-Toony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Toony, M.M., Abdel-Hady, E.E. & El-Kelesh, N.A. Casting of poly (vinyl alcohol)/glycidyl methacrylate reinforced with titanium dioxide nanoparticles for proton exchange fuel cells. J Solid State Electrochem 20, 1913–1920 (2016). https://doi.org/10.1007/s10008-016-3186-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3186-7

Keywords

Navigation