Skip to main content
Log in

Detection of hydrogen peroxide releasing from prostate cancer cell using a biosensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, highly sensitive and selective hydrogel microstructures to detect hydrogen peroxide releasing from cancer cell based on electrochemical biosensors are proposed. Gold nanoparticles (AuNPs) were conjugated with horseradish peroxidase and were dispersed in the prepolymer solution of poly(ethylene glycol) diacrylate. The prepolymer solution was photolithographically patterned in alignment with an array of Au microelectrodes fabricated on glass. Performance of this biosensor was characterized by transmission electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Under the optimal condition, the proposed biosensor can detect hydrogen peroxide (H2O2) in a wide linear range from 2 to 100 μM with a low detection limit of 0.01 μM. It can be also directly used to mark out extracellular H2O2 released from prostate cells. Furthermore, the reproducibility, stability, and selectivity of the biosensor are analogous with the previous report, so this methodology can be used in physiological and pathological detection of H2O2 in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  Google Scholar 

  2. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    Article  CAS  Google Scholar 

  3. Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    Article  CAS  Google Scholar 

  4. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  Google Scholar 

  5. Rojkind M, Domínguez-Rosales JA, Nieto N, Greenwel G (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59:1872–1891

    Article  CAS  Google Scholar 

  6. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  Google Scholar 

  7. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28:1456–1462

    Article  CAS  Google Scholar 

  8. Gabbita SP, Robinson KA, Stewart CA, Floyd RA, Hensley K (2000) Redox regulatory mechanisms of cellular signal transduction. Arch Biochem Biophys 376:1–13

    Article  CAS  Google Scholar 

  9. Liu Y, Kwa T, Revzin A (2012) Simultaneous detection of cell-secreted TNF-a and IFN-g using micropatterned aptamer-modified electrodes. Biomaterials 33(30):7347–7355

    Article  CAS  Google Scholar 

  10. Yan J, Pedrosa VA, Simonian AL, Revzin A (2010) Immobilizing enzymes onto electrode arrays by hydrogel photolithography to fabricate multi-analyte electrochemical biosensors. ACS Appl Mater Interfaces 2:748–755

    Article  CAS  Google Scholar 

  11. Yan J, Pedrosa VA, Enomoto J, Simonian A, Revzin A (2011) Electrochemical biosensors for on-chip detection of oxidative stress. Biomicrofluidics 5(3):32008–32011

    Article  Google Scholar 

  12. Pita M, Kramer M, Zhou J, Poghossian A, Schoning MJ, Fernandez VM, Katz E (2008) Optoelectronic properties of nanostructured ensembles controlled by biomolecular logic systems. ACS Nano 2:2160–2166

    Article  CAS  Google Scholar 

  13. Tuleuova N, Jones CN, Yan J, Ramanculov E, Yokobayashi Y, Revzin A (2010) Development of an aptamer beacon for detection of interferon-gamma. Anaytical Chemistry 82:1851–1857

    Article  CAS  Google Scholar 

  14. Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids and Surfaces B 77:69–74

    Article  CAS  Google Scholar 

  15. Nemzer LR, Schwartz A, Epstein AJ (2010) Enzyme entrapment in reprecipitated polyaniline nano- and microparticles. Macromolecules 43:4324–4330

    Article  CAS  Google Scholar 

  16. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advance Technol 21:27–47

    CAS  Google Scholar 

  17. Cong H, Revzin A, Pan T (2009) Non-adhesive PEG hydrogel nanostructures for self-assembly of highly ordered colloids. Nanotechnology 20(7):75307

    Article  Google Scholar 

  18. Li J, Seok S, Chu B, Dogan F, Zhang Q, Wang Q (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21:217–221

    Article  Google Scholar 

  19. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7(4):3540–3546

    Article  CAS  Google Scholar 

  20. Zhang R, Xu S, Luo J, Liu X (2015) Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin. Microchim Acta 182:175–183

    Article  CAS  Google Scholar 

  21. Pedrosa VA, Yan J, Simonian AL, Revzin A (2011) Micropatterned nanocomposite hydrogels for biosensing applications. Electroanalysis 23:1142–1149

    Article  CAS  Google Scholar 

  22. Kumar B, Koul S, Khandrika L, Randall B, RB M, HK K (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785

    Article  CAS  Google Scholar 

  23. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947

    Article  CAS  Google Scholar 

  24. Heller I, Smaal WT, Lemay SG, Dekker C (2009) Probing macrophage activity with carbon-nanotube sensors. Small 22:2528–2532

    Article  Google Scholar 

  25. Amatore C, Arbault S, Chen Y, Crozatier C, Tapsoba I (2007) Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells. Lab Chip 7:233–238

    Article  CAS  Google Scholar 

  26. Cheah LT, Dou YH, Seymour AML, Dyer CE, Haswell SJ, Wadhawanc JD, Greenman J (2010) Microfluidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species. Lab Chip 10:2720–2726

    Article  CAS  Google Scholar 

  27. Li C, Zhang H, Wu P, Gong Z, Xu G, Cai C (2011) Electrochemical detection of extracellular hydrogen peroxide released from RAW 264.7 murine macrophage cells based on horseradish peroxidase–hydroxyapatite nanohybrids. Analust 136:1116–1123

    Article  CAS  Google Scholar 

  28. Matharu Z, Enomoto J, Revzin A (2013) Electrochemical detection of hydrogen peroxide release from alcohol-injured hepatocytes with miniature enzyme-based electrodes. Anal Chem 85:932–939

    Article  CAS  Google Scholar 

  29. Attar A, Cubillana-Aguilera L, Naranjo-Rodriguez I, Hidalgo de Cisneros JLH, Santander JMP, Amine A (2015) Amperometric inhibition biosensors based on horseradish peroxidase and gold sononanoparticles immobilized onto different electrodes for cyanide measurements. Bioelectrochemistry 101:84–91

    Article  CAS  Google Scholar 

  30. Chinnadayyala SR, Kakoti A, Santhosh M, Goswami P (2014) A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system. Biosensor and Bioelectronics 55:120–126

    Article  CAS  Google Scholar 

  31. Yang X, Chen X, Yang L, Yang W (2008) Direct electrochemistry and electrocatalysis of horseradish peroxidase in α-zirconium phosphate nanosheet film. Bioelectrochemistry 74:90–95

    Article  CAS  Google Scholar 

  32. Lei CX, Hu SQ, Gao N, Shen GL, Yu RQ (2004) An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbon ceramic electrode. Bioelectrochemistry 65:33–39

    Article  CAS  Google Scholar 

  33. Zeng X, Li X, Liu X, Liu Y, Luo S, Kong B, Yang S, Wei W (2009) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes. Biosens Bioelectron 25:806–900

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge partial support by grants from the FAPESP (2014/05653-5, 2012/15666-1), CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valber A. Pedrosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crulhas, B.P., Ramos, N.P., Castro, G.R. et al. Detection of hydrogen peroxide releasing from prostate cancer cell using a biosensor. J Solid State Electrochem 20, 2427–2433 (2016). https://doi.org/10.1007/s10008-016-3182-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3182-y

Keywords

Navigation