Journal of Solid State Electrochemistry

, Volume 20, Issue 6, pp 1633–1643 | Cite as

Electrochemical response of several cathode configurations prepared with Ba0.5Sr0.5Co0.8Fe0.2O3-δ and Ce0.9Gd0.1O1.95 for IT-SOFC

  • Cristian Setevich
  • Fernando Prado
  • Alberto Caneiro
Original Paper


The electrochemical response of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) electrodes prepared by an acetic acid-based gel route has been investigated by impedance spectroscopy (IS) as a function of temperature (400 ≤ T ≤ 900 °C) and oxygen partial pressure (1 × 10−3 ≤ pO2 ≤ 1 atm). Several electrode configurations were studied using Ce0.9Gd0.1O1.95 (GDC) as the electrolyte. These consisted of one BSCF layer (cell A), a BSCF layer with an intermediate porous GDC layer (cell B), and graded electrodes using a composite BSCF+GDC, with variations in the surface area of GDC (cells C and D). The optimum heat treatment for the electrode assemblages was determined to be around 850–900 °C. Analysis of the impedance spectra shows that at T ≥ 600 °C a low frequency (LF) contribution, associated to the gas phase diffusion is systematically the rate-limiting step. All the electrodes show an intermediate frequency (IF) arc related to mixed processes. For cells A and B, the IF response is related to the oxide ion transfer at the electrode/electrolyte surface and the charge transfer at the electrode surface, while for cells C and D the mixed process involves the charge transfer and the molecular oxygen dissociation at the electrode surface.


BSCF Impedance spectroscopy Cathode SOFC 



The authors thank L. Toscani for specific area measurements and A. Prado for English revision of the manuscript. This work was supported by Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Técnica (ANPCyT), Argentina, through PIP 112 2013 0100151 CO, PICT 2010-0322, and PICT 2013-1032, respectively.


  1. 1.
    Jacobson A (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674CrossRefGoogle Scholar
  2. 2.
    Kilner J, Burriel M (2014) Materials for intermediate-temperature solid-oxide fuel cells. Annu Rev Mater Res 44:365–393CrossRefGoogle Scholar
  3. 3.
    Shao Z, Dong H, Xiong G, Cong Y, Yang W (2001) Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. J Membr Sci 183:181–192CrossRefGoogle Scholar
  4. 4.
    Zhou W, Ran R, Shao Z (2009) Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ - based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J Power Sources 192:231–246CrossRefGoogle Scholar
  5. 5.
    Liu LM, Lee TH, Qiu L, Yang YL, Jacobson A (1996) A thermogravimetric study of the phase diagram of strontium cobalt iron oxide, SrCo0.8Fe0.2O3-δ. Mater Res Bull 31:29–35CrossRefGoogle Scholar
  6. 6.
    Grunbaum N, Mogni L, Prado F, Caneiro A (2004) Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3-δ. J Solid State Chem 177:2350–2357CrossRefGoogle Scholar
  7. 7.
    Prado F, Grunbaum N, Caneiro A, Manthiram A (2004) Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1-xLaxCo0.8Fe0.2O3-δ (0 ≤ x ≤ 0.4). Solid State Ionics 167:147–154CrossRefGoogle Scholar
  8. 8.
    Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRefGoogle Scholar
  9. 9.
    Švarcová S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1-xCo1-yFeyO3-δ. Solid State Ionics 178:1787–1791CrossRefGoogle Scholar
  10. 10.
    Arnold M, Gesing T, Martynczuk J, Feldhoff A (2008) Correlation of the formation and the decomposition process of the BSCF perovskite at intermediate temperatures. Chem Mater 20:5851–5858CrossRefGoogle Scholar
  11. 11.
    Petric A, Huang P, Tietz F (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135:719–725CrossRefGoogle Scholar
  12. 12.
    Zhu Q, Jin T, Wang Y (2006) Thermal expansion behavior and chemical compatibility of BaxSr1-xCo1-yFeyO3-δ with 8YSZ and 20GDC. Solid State Ionics 177:1199–1204CrossRefGoogle Scholar
  13. 13.
    Xie J, Ju Y, Sakai T, Ishihara T (2013) Improvement in stability of La0.4Ba0.6CoO3 cathode by combination with La0.6Sr0.4Co0.2Fe0.8O3 for intermediate temperature-solid oxide fuel cells. J Solid State Electrochem 17:2251–2258CrossRefGoogle Scholar
  14. 14.
    Setevich C, Prado F, Florio DZ, Caneiro A (2014) Stabilization of the cubic perovskite in the system La1-xBaxCo1-yFeyO3-δ (0.7 ≤ x ≤ 0.9) and its electrochemical performance as cathode materials for IT-SOFC. J Power Sources 247:264–272CrossRefGoogle Scholar
  15. 15.
    Setevich C, Mogni L, Caneiro A, Prado F (2012) Characterization of the La1−xBaxCoO3−δ (0 ≤ x ≤ 1) system as cathode material for IT-SOFC. J Electrochem Soc 159:B72–B79CrossRefGoogle Scholar
  16. 16.
    Wang K, Ran R, Zhou W, Gu H, Shao Z, Ahn J (2008) Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 composite cathode. J Power Sources 179:60–68CrossRefGoogle Scholar
  17. 17.
    Liu QL, Khor KA, Chan SH (2006) High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. J Power Sources 161:123–128CrossRefGoogle Scholar
  18. 18.
    Lee JG, Ho Park J, Gun Shul Y (2014) Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nat Commun 5:4045Google Scholar
  19. 19.
    Yaremchenko A, Mikhalev S, Kravchenko E, Frade J (2014) Thermochemical expansion of mixedconducting (Ba, Sr) Co0.8Fe0.2O3−δ ceramics. J Eur Ceram Soc 34:703–715CrossRefGoogle Scholar
  20. 20.
    Li R, Ge L, Chen H, Guo L (2012) Preparation and performance of triple-layer graded LaBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathode for intermediate-temperature solid oxide fuel cells. Electrochim Acta 85:273–277CrossRefGoogle Scholar
  21. 21.
    Setevich C, Mogni L, Caneiro A, Prado F (2012) Optimum cathode configuration for IT-SOFC using La0.4Ba0.6CoO3-δ and Ce0.9Gd0.1O1.95. Int J Hydrogen Energy 37:14895–14901CrossRefGoogle Scholar
  22. 22.
    Murray EP, Server MJ, Barnett SA (2002) Electrochemical performance of (La, Sr)(Co, Fe)O3–(Ce, Gd)O3 composite cathodes. Solid State Ionics 148:27–34CrossRefGoogle Scholar
  23. 23.
    Gu H, Chen H, Gao L, Guo L (2009) Electrochemical properties of LaBaCo2O5+δ–Sm0.2Ce0.8O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. Electrochim Acta 54:7094–7098CrossRefGoogle Scholar
  24. 24.
    Chen D, Ran R, Shao Z (2010) Assessment of PrBaCo2O5+δ+Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. J Power Sources 195:7187–7195CrossRefGoogle Scholar
  25. 25.
    Xia C, Rauch W, Chen F, Liu M (2002) Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149:11–19CrossRefGoogle Scholar
  26. 26.
    Xia Y, Armstrong T, Prado F, Manthiram A (2000) Sol–gel synthesis, phase relationships, and oxygen permeation properties of Sr4Fe6-xCoxO13+δ (0 ≤ x ≤ 3). Solid State Ionics 130:81–90CrossRefGoogle Scholar
  27. 27.
    Rodríguez-Carvajal J Fullprof: a program for Rietveld Refinement and Profile Matching Analysis of Complex Powder Diffraction Patterns. Laboratoire Léon Brillouin (CEA-CNRS)Google Scholar
  28. 28.
    Zview version 2.9b. Copyright 1990–2005. Scribner Associates, Inc. D. JohnsonGoogle Scholar
  29. 29.
    Taguchi H, Takeda Y, Kanamaru F, Shimada M, Koizumi M (1977) Barium cobalt trioxide. Acta Crystallogr B 33:1298–1299CrossRefGoogle Scholar
  30. 30.
    Yung H, Jian L, Ping Jiang S (2012) Polarization promoted chemical reaction between Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode and ceria based electrolytes of solid oxide fuel cells. J Electrochem Soc 159:F794–F798CrossRefGoogle Scholar
  31. 31.
    Zhou W, Ran R, Shao Z, Jin W, Xu N (2008) Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x>0) perovskite as a solid-oxide fuel cell cathode. J Power Sources 182:24–31CrossRefGoogle Scholar
  32. 32.
    Adler SB (2001) Chemical expansivity of electrochemical ceramics. J Am Ceram Soc 84:2117–2119CrossRefGoogle Scholar
  33. 33.
    Deportes C, Duclot M, Fabry P, Fouletier J, Hammou A, Kleitz M, Siebert E, Souquet JL (1994) Electrochimie des Solides. Presses Universitaires de Grenoble, GrenobleGoogle Scholar
  34. 34.
    Huang K (2004) Gas-diffusion process in a tubular cathode substrate of a SOFC. II: identification of gas-diffusion process using AC impedance method. J Electrochem Soc 151:H117–H121CrossRefGoogle Scholar
  35. 35.
    Takeda Y, Kanno R, Noda M, Tomoda Y, Yamamoto O (1987) Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J Electrochem Soc 134:2656–2661CrossRefGoogle Scholar
  36. 36.
    Ringuedé A, Fouletier J (2001) Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures. Solid State Ionics 139:167–177CrossRefGoogle Scholar
  37. 37.
    Grunbaum N, Dessemond L, Fouletier J, Prado F, Caneiro A (2009) Rate limiting steps of the porous La0.6Sr0.4Co0.8Fe0.2O3−δ electrode material. Solid State Ionics 180:1448–1452CrossRefGoogle Scholar
  38. 38.
    Mogni L, Grunbaum N, Prado F, Caneiro A (2011) Oxygen reduction reaction on Ruddlesden–Popper phases studied by impedance spectroscopy. J Electrochem Soc 158:B202–B207CrossRefGoogle Scholar
  39. 39.
    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843CrossRefGoogle Scholar
  40. 40.
    Reid RC, Prausnitz JM, Poling BE (2001) The properties of Gases and Liquids, 5th edn. Mc Graw-Hill, New YorkGoogle Scholar
  41. 41.
    Pang S, Jiang X, Li X, Wang Q, Su Z (2012) A comparative study of electrochemical performance of La0.5Ba0.5CoO3-δ and La0.5Ba0.5CoO3-δ-Gd0.1Ce0.9O1.95 cathodes. Int J Hydrogen Energy 37:2157–2165CrossRefGoogle Scholar
  42. 42.
    Chen D, Ran R, Zhang K, Wang J, Shao Z (2009) Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J Power Sources 188:96–105CrossRefGoogle Scholar
  43. 43.
    Escudero MJ, Aguadero A, Alonso JA, Daza L (2007) A kinetic study of oxygen reduction reaction on La NiO cathodes by means of impedance spectroscopy. J Electroanal Chem 611:107–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cristian Setevich
    • 1
    • 2
  • Fernando Prado
    • 1
  • Alberto Caneiro
    • 2
  1. 1.Departamento de FísicaUniversidad Nacional del Sur and Instituto de Física del Sur, CONICETBahía BlancaArgentina
  2. 2.Centro Atómico Bariloche, Comisión Nacional de Energía AtómicaS. C. de BarilocheArgentina

Personalised recommendations