Skip to main content

Advertisement

Log in

Facile preparation of nitrogen-doped porous carbon for high performance symmetric supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the micromolecule l-glutamic acid (Glu) is employed as nitrogen-rich precursor to prepare a novel porous carbon, and ZnCl2 is used as activating agent to improve the surface area and electrochemical performance of the carbon. The nitrogen content of the carbon (Glu-2.5) prepared by Glu and ZnCl2 with a mass ratio of 1:2.5 retains as high as 7.1 % at an activation temperature of 700 °C. The surface area and pore volume of Glu-2.5 are 1007.4 m2 g−1 and 0.57 cm3 g−1, respectively. Glu-2.5 exhibits a high specific capacitance of 330.6 F g−1 in 2 M KOH electrolyte at the current density of 1 A g−1and good cycling stability (89 % retention of capacitance after 5000 charge/discharge cycles). More importantly, the assembled symmetric supercapacitor using Glu-2.5 as electrodes reveals a high energy density (16.7 Wh kg−1) under the power density of 404.7 W kg−1. Owing to its inherent advantages, Glu-2.5 could be a promising and scalable alternative applied to energy storage/conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  2. Jin H, Wang X, Gu Z (2013) J Polin J Power Sources 236:285–292

    Article  CAS  Google Scholar 

  3. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  4. Huang HS, Chang KH, Suzuki N, Yamauchi Y, Hu CC, Wu KCW (2013) Small 9:2520–2526

    Article  CAS  Google Scholar 

  5. Inagaki M, Konno H, Tanaike O (2010) J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  6. Wang X, Liu S, Wang H, Tu F, Fang D, Li Y (2012) J Solid State Electrochem 16:3593–3602

    Article  CAS  Google Scholar 

  7. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Science:347. doi:10.1126/science.1246501

  8. Salunkhe RR, Hsu SH, Wu KC, Yamauchi Y (2014) ChemSusChem 7:1551–1556

    Article  CAS  Google Scholar 

  9. Liu Y, Hu Z, Xu K, Zheng X, Gao Q (2008) Acta Phys -Chim Sin 24:1143–1148

    Article  CAS  Google Scholar 

  10. Noked M, Soffer A, Aurbach D (2011) J Solid State Electrochem 15:1563–1578

    Article  CAS  Google Scholar 

  11. Malgras V, Ji Q, Kamachi Y, Mori T, Shieh FK, Wu KC, Katsuhiko A, Yamauchi Y (2015) Bull Chem Soc Jpn 88:1171–1200

    Article  CAS  Google Scholar 

  12. Jiang L, Yan J, Zhou Y, Hao L, Xue R, Jiang L, Yi B (2013) J Solid State Electrochem 17:2949–2958

    Article  CAS  Google Scholar 

  13. Chaikittisilp W, Hu M, Wang H, Huang HS, Fujita T, Wu KCW, Chen LC, Yamauchi Y (2012) Ariga K. Chem Commun 48:7259–7261

    Article  CAS  Google Scholar 

  14. Bhattacharjya D, Yu JS (2014) J Power Sources 262:224–231

    Article  CAS  Google Scholar 

  15. Dutta S, Bhaumik A, Wu KCW (2014) Energy & Environmental Science 7:3574–3592

    Article  CAS  Google Scholar 

  16. Zhao X, Wang A, Yan J, Sun G, Sun L, Zhang T (2010) Chem Mater 22:5463–5473

    Article  CAS  Google Scholar 

  17. Zhao Y, Liu M, Deng X, Miao L, Tripathi PK, Ma X, Zhu D, Xu Z (2015) Hao, gan L. Electrochim Acta 153:448–455

    Article  CAS  Google Scholar 

  18. Iyyamperumal E (2012) Wang S, Dai L. ACS Nano 6:5259–5265

    Article  CAS  Google Scholar 

  19. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK (2011) Choi JW. Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  20. Guo H, Gao Q (2009) J Power Sources 186:551–556

    Article  CAS  Google Scholar 

  21. Lee YH, Lee YF, Chang KH, Hu CC (2011) Electrochem Commun 13:50–53

    Article  CAS  Google Scholar 

  22. Hulicova-Jurcakova D, Kodama M, Shiraishi SS, Hatori H, Zhu ZH, Lu GQ (2009) Adv Funct Mater 19:1800–1809

    Article  CAS  Google Scholar 

  23. Shin WH, Jeong HM, Kim BG, Kang JK (2012) Choi JW. Nano Lett 12:2283–2288

    Article  CAS  Google Scholar 

  24. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) Science 324:768–771

    Article  CAS  Google Scholar 

  25. Wei D, Liu Y, Wang Y, Zhang H (2009) Huang L, Yu G. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  26. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P (2012) Wu ZY, Yu SH. ACS Nano 6:7092–7102

    Article  CAS  Google Scholar 

  27. Wang Q, Cao Q, Wang X, Jing B, Kuang H, Zhou L (2013) J Power Sources 225:101–107

    Article  CAS  Google Scholar 

  28. Rufford TE, Hulicova-Jurcakova D, Zhu ZD, Lu GQ (2008) Electrochem Commun 10:1594–1597

    Article  CAS  Google Scholar 

  29. Jeong H, Kim HJ, Lee YJ, Hwang JY, Park OK, Wee JH, Yang CM, Ku BC, Lee JK (2015) Mater Lett 145:273–278

    Article  CAS  Google Scholar 

  30. Ma G, Wu Y, Sun K, Peng H, Wang H, Lei Z (2014) Mater Lett 132:41–44

    Article  CAS  Google Scholar 

  31. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207–219

    Article  CAS  Google Scholar 

  32. Ahmadpour A, Do DD (1997) Carbon 35:1723–1732

    Article  CAS  Google Scholar 

  33. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2011) J Am Chem Soc 134:15–18

    Article  Google Scholar 

  34. Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Beguin F (2007) Adv Funct Mater:17

  35. Stoller MD, Park S, Zhu Y, An J (2008) Ruoff RS. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  36. Wu X, Zhou J, Xing W, Wang G, Cui H, Zhuo S, Xue Q, Yana Z, Qiao SZ (2012) Mater Chem 22:23186–23193

    Article  CAS  Google Scholar 

  37. Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Nano Lett 12:321–325

    Article  CAS  Google Scholar 

  38. Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S (2015) Electrochim Acta 153:68–75

    Article  CAS  Google Scholar 

  39. Hou J, Cao C (2015) Idrees F, Ma X. ACS Nano 9:2556–2564

    Article  CAS  Google Scholar 

  40. Gao X, Xing W, Zhou J, Wang G, Zhuo S, Liu Z, Yan Z (2014) Electrochim Acta 133:459–466

    Article  CAS  Google Scholar 

  41. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) Adv Funct Mater 23:2322–2328

    Article  CAS  Google Scholar 

  42. Li M, Xue J (2014) J Phys Chem C 118:2507–2517

    Article  CAS  Google Scholar 

  43. Eliad L, Salitra G, Soffer A, Aurbach D (2001) J Phys Chem B 105:6880–6887

    Article  CAS  Google Scholar 

  44. Su P, Jiang L, Zhao J, Yan J, Li C, Yang Q (2012) Chem Commun 48:8769–8771

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Science Foundation of China (nos. 21164009 and 21174114), IRT1177 (IRT1177), the Science and Technology Program of Gansu Province (nos. 1308RJZA295 and 1308RJZA265), Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University) of Ministry of Education, and Key Laboratory of Polymer Materials of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofu Ma or Ziqiang Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Zhang, Z., Peng, H. et al. Facile preparation of nitrogen-doped porous carbon for high performance symmetric supercapacitor. J Solid State Electrochem 20, 1613–1623 (2016). https://doi.org/10.1007/s10008-016-3171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3171-1

Keywords

Navigation