Abstract
A facile two-step strategy is developed for synthesis of MnO2/polyaniline (PANI) hybrid nanostructures on carbon cloth (CC). Vertically aligned PANI nanofiber arrays were firstly grown on CC via chemical oxidative polymerization, and MnO2 nanoparticles were then deposited on the surface of PANI nanofibers via redox reaction between PANI and KMnO4 solution. Structural and morphological characterizations of composites were investigated by FESEM, Raman, and XPS techniques, respectively. Electrochemical performance of the composites as supercapacitor electrode materials was evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. The results demonstrate that the morphology and areal specific capacitance of the MnO2/PANI/CC composite vary with MnO2 deposition time. The ternary composite with 6 h MnO2 deposition exhibits a high areal capacitance of 1.56 F cm−2 at the scan rate of 10 mV s−1 and 0.99 F cm−2 at a current density of 2 mA cm−2 and still maintains 88.1 % of the original capacitance after 1000 charge-discharge cycles at a large current density of 10 mA cm−2.The excellent performance is due to the synergistic effect from the combination of two active pseudo materials and 3D conductive CC backbone. This study further highlights the importance of optimal design and control of material structures in supercapacitor applications.
This is a preview of subscription content, access via your institution.







References
Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62
Wang Y, Xia Y (2013) Adv Mater 25:5336–5342
Lu Q, Chen JG, Xiao JQ (2013) Angew Chem Int Ed 52:1882–1889
Simon P, Gogotsi Y (2008) Nat Mater 7:845–854
Jiang H, Lee PS, Li C (2013) Energy Environ Sci 6:41–53
Cahen S, Janot R, Laffont-Dantras L, Tarascon JM (2008) J Electrochem Soc 155:A512–A519
Liu R, Duay J, Lee SB (2011) ACS Nano 7:5608–5619
Chang JK, Liu CT, Tsai WT (2004) Electrochem Commun 6:666–671
Chan HY, Chang HC, Lee KY (2013) Vacuum 87:164–168
Zhi M, Manivannan A, Meng F, Wu N (2012) J Power Sources 208:345–353
Wang Y, Li H, Xia Y (2006) Adv Mater 18:2619–2623
Yan Y, Cheng Q, Zhu Z, Pavlinek V, Saha P, Li C (2013) J Power Sources 240:544–550
Lee SY, Kim JI, Park SJ (2014) Energy 78:298–303
Sharma RK, Rastogi AC, Desu SB (2008) Electrochim Acta 53:7690–7695
Sumboja A, Foo CY, Yan J, Yan CY, Gupta RK, Lee PS (2012) J Mater Chem 22:23921–23928
Kharade PM, Chavan SG, Salunkhe DJ, Joshi PB, Mane SM, Kulkarni SB (2014) Mater Res Bull 52:37–41
Hou Y, Cheng Y, Hobson T, Liu J (2010) Nano Lett 10:2727–2733
Yan Y, Cheng Q, Pavlinek V, Saha P, Li C (2012) Electrochim Acta 71:27–32
Wang J, Yang Y, Huang Z, Kang F (2012) J Mater Chem 22:16943–16949
Guo D, Yu X, Shi W, Luo Y, Li Q, Wang T (2014) J Mater Chem A 2:8833–8838
Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Adv Mater 26:2676–2682
Wang S, Dryfe RAW (2013) J Mater Chem A 1:5279–5283
He X, Gao B, Wang G, Wei J, Zhao C (2013) Electrochim Acta 111:210–215
Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) J Phys Chem C 115:23584–23590
Chen D, Song M, Cheng S, Huang L, Liu M (2014) J Power Sources 248:1197–1200
Chen YC, Hsu YK, Lina YG, Lin YK, Horng YY, Chen LC, Chen KH (2011) Electrochim Acta 56:7124–7130
Zhang R, Liu J, Guo H, Tong X (2014) Mater Lett 136:198–201
Padmanathan N, Selladurai S (2014) RSC Adv 4:8341–8349
Safavi A, Kazemi H, Kazemi SH (2014) J Power Sources 256:354–360
Chen LF, Yu ZY, Ma X, Li ZY, Yu SH (2014) Nano Energy 9:345–354
Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Nano Lett 7:281–286
Wang H, Wang X, Peng C, Peng F, Yu H (2015) J Nanosci Nanotechnol 15:709–714
Anu Prathap MU, Satpati B (2013) Srivastava R. Sensor Actuat B-Chem 186:67–77
Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Adv Funct Mater 16:2393–2397
Jain M, Annapoorni S (2010) Synth Met 160:1727–1732
Trchova M, Moravkova Z, Blaha M, Stejskal J (2014) Electrochim Acta 122:28–38
Zhong M, Song Y, Li Y, Ma C, Zhai X, Shi J (2012) Q Guo, Liu L. J Power Sources 217:6–12
Cochet M, Louarn G, Quillard S, Buisson JP, Lefrant S (2000) J Raman Spectrosc 31:1041–1049
Nam KW, Kim KB (2006) J Electrochem Soc 153:A81–A88
Chen S, Zhu J, Wu X, Han Q, Wang X (2010) ACS Nano 4:2822–2830
Li GR, Feng ZP, Ou YN, Wu D, Fu R, Tong YX (2010) Langmuir 26:2209–2213
Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) ACS Nano 4:5835–5842
Li Z, Wang J, Liu X, Liu S, Ou J, Yang S (2011) J Mater Chem 21:3397–3403
Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Nano Lett 8:2664–2668
Preisler E (1976) J Appl Electrochem 6:311–320
Chi HZ, Tian S, Hu XS, Qin HY, Xi JH (2014) J Alloy Compd 587:354–360
Meng FH, Yan XL, Zhu Y, Si PC (2013) Nanoscale Res Lett 8:179–186
Zhao H, Han GY, Chang YZ, Li MY, Li YP (2013) Electrochim Acta 91:50–57
Bian LJ, Luan F, Liu SS, Liu XX (2012) Electrochim Acta 64:17–22
Yan J, Khoo E, Sumboja A, Lee PS (2010) ACS Nano 4:4247–4255
Lei Z, Zhang J, Zhao XS (2012) J Mater Chem 22:153–160
Horng YY, Lu YC, Hsu YK, Chen CC, Chen LC, Chen KH (2010) J Power Sources 195:4418–4422
Li H, Zhang X, Ding R, Qi L, Wang H (2013) Electrochim Acta 108:497–505
Xu MW, Jia W, Bao SJ, Su Z, Dong B (2010) Electrochim Acta 55:5117–5122
Gao S, Liao F, Ma S, Zhu L, Shao M (2015) J Mater Chem A 3:16520–16527
Zou WY, Wang W, He BL, Sun ML, Yin YS (2010) J Power Sources 195:7489–7493
Zhao X, Chen C, Huang Z, Lei J, Zhang J, Li Y, Zhang L, Zhang Q (2015) RSC Adv 5:66311–66317
Acknowledgments
This work was supported by the National Natural Science Foundation of China ( 21371057), the Basic Research Program of Shanghai ( 13NM1400801), and International Cooperation Project of Shanghai Municipal Science and Technology Committee (15520721100).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplement material
ESM 1
(DOCX 768 kb)
Rights and permissions
About this article
Cite this article
He, Y., Du, S., Li, H. et al. MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. J Solid State Electrochem 20, 1459–1467 (2016). https://doi.org/10.1007/s10008-016-3162-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-016-3162-2