Skip to main content

MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes

Abstract

A facile two-step strategy is developed for synthesis of MnO2/polyaniline (PANI) hybrid nanostructures on carbon cloth (CC). Vertically aligned PANI nanofiber arrays were firstly grown on CC via chemical oxidative polymerization, and MnO2 nanoparticles were then deposited on the surface of PANI nanofibers via redox reaction between PANI and KMnO4 solution. Structural and morphological characterizations of composites were investigated by FESEM, Raman, and XPS techniques, respectively. Electrochemical performance of the composites as supercapacitor electrode materials was evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. The results demonstrate that the morphology and areal specific capacitance of the MnO2/PANI/CC composite vary with MnO2 deposition time. The ternary composite with 6 h MnO2 deposition exhibits a high areal capacitance of 1.56 F cm−2 at the scan rate of 10 mV s−1 and 0.99 F cm−2 at a current density of 2 mA cm−2 and still maintains 88.1 % of the original capacitance after 1000 charge-discharge cycles at a large current density of 10 mA cm−2.The excellent performance is due to the synergistic effect from the combination of two active pseudo materials and 3D conductive CC backbone. This study further highlights the importance of optimal design and control of material structures in supercapacitor applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  2. Wang Y, Xia Y (2013) Adv Mater 25:5336–5342

    Article  CAS  Google Scholar 

  3. Lu Q, Chen JG, Xiao JQ (2013) Angew Chem Int Ed 52:1882–1889

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Jiang H, Lee PS, Li C (2013) Energy Environ Sci 6:41–53

    Article  CAS  Google Scholar 

  6. Cahen S, Janot R, Laffont-Dantras L, Tarascon JM (2008) J Electrochem Soc 155:A512–A519

    Article  CAS  Google Scholar 

  7. Liu R, Duay J, Lee SB (2011) ACS Nano 7:5608–5619

    Article  Google Scholar 

  8. Chang JK, Liu CT, Tsai WT (2004) Electrochem Commun 6:666–671

    Article  CAS  Google Scholar 

  9. Chan HY, Chang HC, Lee KY (2013) Vacuum 87:164–168

    Article  Google Scholar 

  10. Zhi M, Manivannan A, Meng F, Wu N (2012) J Power Sources 208:345–353

    Article  CAS  Google Scholar 

  11. Wang Y, Li H, Xia Y (2006) Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  12. Yan Y, Cheng Q, Zhu Z, Pavlinek V, Saha P, Li C (2013) J Power Sources 240:544–550

    Article  CAS  Google Scholar 

  13. Lee SY, Kim JI, Park SJ (2014) Energy 78:298–303

    Article  CAS  Google Scholar 

  14. Sharma RK, Rastogi AC, Desu SB (2008) Electrochim Acta 53:7690–7695

    Article  CAS  Google Scholar 

  15. Sumboja A, Foo CY, Yan J, Yan CY, Gupta RK, Lee PS (2012) J Mater Chem 22:23921–23928

    Article  CAS  Google Scholar 

  16. Kharade PM, Chavan SG, Salunkhe DJ, Joshi PB, Mane SM, Kulkarni SB (2014) Mater Res Bull 52:37–41

    Article  CAS  Google Scholar 

  17. Hou Y, Cheng Y, Hobson T, Liu J (2010) Nano Lett 10:2727–2733

    Article  CAS  Google Scholar 

  18. Yan Y, Cheng Q, Pavlinek V, Saha P, Li C (2012) Electrochim Acta 71:27–32

    Article  CAS  Google Scholar 

  19. Wang J, Yang Y, Huang Z, Kang F (2012) J Mater Chem 22:16943–16949

    Article  CAS  Google Scholar 

  20. Guo D, Yu X, Shi W, Luo Y, Li Q, Wang T (2014) J Mater Chem A 2:8833–8838

    Article  CAS  Google Scholar 

  21. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Adv Mater 26:2676–2682

    Article  CAS  Google Scholar 

  22. Wang S, Dryfe RAW (2013) J Mater Chem A 1:5279–5283

    Article  CAS  Google Scholar 

  23. He X, Gao B, Wang G, Wei J, Zhao C (2013) Electrochim Acta 111:210–215

    Article  CAS  Google Scholar 

  24. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) J Phys Chem C 115:23584–23590

    Article  CAS  Google Scholar 

  25. Chen D, Song M, Cheng S, Huang L, Liu M (2014) J Power Sources 248:1197–1200

    Article  CAS  Google Scholar 

  26. Chen YC, Hsu YK, Lina YG, Lin YK, Horng YY, Chen LC, Chen KH (2011) Electrochim Acta 56:7124–7130

    Article  CAS  Google Scholar 

  27. Zhang R, Liu J, Guo H, Tong X (2014) Mater Lett 136:198–201

    Article  CAS  Google Scholar 

  28. Padmanathan N, Selladurai S (2014) RSC Adv 4:8341–8349

    Article  CAS  Google Scholar 

  29. Safavi A, Kazemi H, Kazemi SH (2014) J Power Sources 256:354–360

    Article  CAS  Google Scholar 

  30. Chen LF, Yu ZY, Ma X, Li ZY, Yu SH (2014) Nano Energy 9:345–354

    Article  CAS  Google Scholar 

  31. Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Nano Lett 7:281–286

    Article  CAS  Google Scholar 

  32. Wang H, Wang X, Peng C, Peng F, Yu H (2015) J Nanosci Nanotechnol 15:709–714

    Article  CAS  Google Scholar 

  33. Anu Prathap MU, Satpati B (2013) Srivastava R. Sensor Actuat B-Chem 186:67–77

    Article  CAS  Google Scholar 

  34. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Adv Funct Mater 16:2393–2397

    Article  CAS  Google Scholar 

  35. Jain M, Annapoorni S (2010) Synth Met 160:1727–1732

    Article  CAS  Google Scholar 

  36. Trchova M, Moravkova Z, Blaha M, Stejskal J (2014) Electrochim Acta 122:28–38

    Article  CAS  Google Scholar 

  37. Zhong M, Song Y, Li Y, Ma C, Zhai X, Shi J (2012) Q Guo, Liu L. J Power Sources 217:6–12

    Article  CAS  Google Scholar 

  38. Cochet M, Louarn G, Quillard S, Buisson JP, Lefrant S (2000) J Raman Spectrosc 31:1041–1049

    Article  CAS  Google Scholar 

  39. Nam KW, Kim KB (2006) J Electrochem Soc 153:A81–A88

    Article  CAS  Google Scholar 

  40. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  41. Li GR, Feng ZP, Ou YN, Wu D, Fu R, Tong YX (2010) Langmuir 26:2209–2213

    Article  CAS  Google Scholar 

  42. Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  43. Li Z, Wang J, Liu X, Liu S, Ou J, Yang S (2011) J Mater Chem 21:3397–3403

    Article  CAS  Google Scholar 

  44. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Nano Lett 8:2664–2668

    Article  CAS  Google Scholar 

  45. Preisler E (1976) J Appl Electrochem 6:311–320

    Article  CAS  Google Scholar 

  46. Chi HZ, Tian S, Hu XS, Qin HY, Xi JH (2014) J Alloy Compd 587:354–360

    Article  CAS  Google Scholar 

  47. Meng FH, Yan XL, Zhu Y, Si PC (2013) Nanoscale Res Lett 8:179–186

    Article  Google Scholar 

  48. Zhao H, Han GY, Chang YZ, Li MY, Li YP (2013) Electrochim Acta 91:50–57

    Article  CAS  Google Scholar 

  49. Bian LJ, Luan F, Liu SS, Liu XX (2012) Electrochim Acta 64:17–22

    Article  CAS  Google Scholar 

  50. Yan J, Khoo E, Sumboja A, Lee PS (2010) ACS Nano 4:4247–4255

    Article  CAS  Google Scholar 

  51. Lei Z, Zhang J, Zhao XS (2012) J Mater Chem 22:153–160

    Article  CAS  Google Scholar 

  52. Horng YY, Lu YC, Hsu YK, Chen CC, Chen LC, Chen KH (2010) J Power Sources 195:4418–4422

    Article  CAS  Google Scholar 

  53. Li H, Zhang X, Ding R, Qi L, Wang H (2013) Electrochim Acta 108:497–505

    Article  CAS  Google Scholar 

  54. Xu MW, Jia W, Bao SJ, Su Z, Dong B (2010) Electrochim Acta 55:5117–5122

    Article  CAS  Google Scholar 

  55. Gao S, Liao F, Ma S, Zhu L, Shao M (2015) J Mater Chem A 3:16520–16527

    Article  CAS  Google Scholar 

  56. Zou WY, Wang W, He BL, Sun ML, Yin YS (2010) J Power Sources 195:7489–7493

    Article  CAS  Google Scholar 

  57. Zhao X, Chen C, Huang Z, Lei J, Zhang J, Li Y, Zhang L, Zhang Q (2015) RSC Adv 5:66311–66317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China ( 21371057), the Basic Research Program of Shanghai ( 13NM1400801), and International Cooperation Project of Shanghai Municipal Science and Technology Committee (15520721100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilin Cheng or Petr Saha.

Electronic supplement material

ESM 1

(DOCX 768 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Du, S., Li, H. et al. MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. J Solid State Electrochem 20, 1459–1467 (2016). https://doi.org/10.1007/s10008-016-3162-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3162-2

Keywords