Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Springer, London
Google Scholar
Keith JA, Jacob T (2010) Computational simulations on the oxygen reduction reaction in electrochemical systems. Mod Aspect Electroc 50:89–132
CAS
Google Scholar
Koper MTM, Heering HA (2010) Comparison of electrocatalysis and bioelectrocatalysis of hydrogen and oxygen redox reactions. In: Wieckowski A, Norskov JK (eds) Fuel cell science. Theory, fundamentals and biocatalysis. Wiley, Hoboken
Google Scholar
Adzic R (1998) Recent advances in the kinetics of oxygen reduction. Wiley VCH, New York
Google Scholar
Kazeman I, Hasanzadeh M, Jafarian M, Shadjou N, Khalilzadeh B (2010) Oxygen reduction reaction on a rotating Ag-GC disk electrode in acidic solution. Chin J Chem 28:504–508
CAS
Article
Google Scholar
Appleby AJ (1993) Electrocatalysis of aqueous dioxygen reduction. J Electroanal Chem 357:117–179
CAS
Article
Google Scholar
Damjanovic A, Brusic V, Bockris JOM (1967) Mechanism of oxygen reduction related to electronic structure of gold-palladium alloy. J Phys Chem 71:2741–2742
CAS
Article
Google Scholar
Sawyer DT, Chiericato G Jr, Angelis CT, Nanni EJ Jr, Tsuchiya T (1982) Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal Chem 54:1720–1724
CAS
Article
Google Scholar
Yeager E (1984) Electrocatalysts for molecular oxygen reduction. Electrochim Acta 29:1527–1537
CAS
Article
Google Scholar
Yeager E (1986) Dioxygen electrocatalysis. Mechanisms in relation to catalyst structure. J Mol Catal 38:5–25
CAS
Article
Google Scholar
Gnanamuthu DS, Petrocelli JV (1967) A generalized expression for the Tafel slope and the kinetics of oxygen reduction on noble metals and alloys. J Electrochem Soc 114:1036–1041
CAS
Article
Google Scholar
Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851
CAS
Article
Google Scholar
Sarapuu A, Nurmik M, Mändar H, Rosental A, Laaksonen T, Kontturi K, Schiffrin DJ, Tammeveski K (2008) Electrochemical reduction of oxygen on nanostructured gold electrodes. J Electroanal Chem 612:78–86
CAS
Article
Google Scholar
Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76:5924–5929
CAS
Article
Google Scholar
Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259
CAS
Article
Google Scholar
Mohanty US (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270
CAS
Article
Google Scholar
Alexeyeva N, Tammeveski K (2008) Electroreduction of oxygen on gold nanoparticle/PDDA-MWCNT nanocomposites in acid solution. Anal Chim Acta 618:140–146
CAS
Article
Google Scholar
Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665
CAS
Article
Google Scholar
El-Deab MS, Sotomura T, Ohsaka T (2005) Morphological selection of gold nanoparticles electrodeposited on various substrates. J Electrochem Soc 152:C730–C737
Article
Google Scholar
Erikson H, Sarapuu A, Tammeveski K, Solla-Gullon J, Feliu JM (2014) Shape-dependent electrocatalysis: oxygen reduction on carbon-supported gold nanoparticles. Chem Electro Chem 1:1338–1347
CAS
Google Scholar
Kuai L, Geng B, Wang S, Zhao Y, Luo Y, Jiang H (2011) Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reaction in alkaline media. Chemistry–A European J 17:3482–3489
CAS
Article
Google Scholar
Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2007) Electrochemistry of shape-controlled catalysts: oxygen reduction reaction on cubic gold nanoparticles. J Phys Chem C 111:14078–14083
Article
Google Scholar
Inasaki T, Kobayashi S (2009) Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts. Electrochim Acta 54:4893–4897
CAS
Article
Google Scholar
Schmidt TJ, Stamenkovic V, Arenz M, Markovic NM, Ross PN Jr (2002) Oxygen electrocatalysis in alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification. Electrochim Acta 47:3765–3776
CAS
Article
Google Scholar
Hernández J, Solla-Gullón J, Herrero E, Feliu JM, Aldaz A (2009) In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J Nanosci Nanotechnol 9:2256–2273
Article
Google Scholar
El-Deab MS, Sotomura T, Ohsaka T (2005) Oxygen reduction at electrochemically deposited crystallographically oriented Au(100)-like gold nanoparticles. Electrochem Commun 7:29–34
CAS
Article
Google Scholar
Wain AJ (2013) Imaging size effects on the electrocatalytic activity of gold nanoparticles using scanning electrochemical microscopy. Electrochim Acta 92:383–391
CAS
Article
Google Scholar
Štrbac S, Adžic RR (1996) The influence of pH on reaction pathways for O2 reduction on the Au(100) face. Electrochim Acta 41:2903–2908
Article
Google Scholar
Blizanac BB, Lucas CA, Gallagher ME, Arenz M, Ross PN, Markovic NM (2004) Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: the pH effect. J Phys Chem B 108:625–634
CAS
Article
Google Scholar
Mohammad AM, Awad MI, El-Deab MS, Okajima T, Ohsaka T (2008) Electrocatalysis by nanoparticles: optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochim Acta 53:4351–4358
CAS
Article
Google Scholar
Rodriguez P, Koper MTM (2014) Electrocatalysis on gold. Phys Chem Chem Phys 16:13583–13594
CAS
Article
Google Scholar
Quaino P, Luque NB, Nazmutdinov R, Santos E, Schmickler W (2012) Why is gold such a good catalyst for oxygen reduction in alkaline media? Angew Chem, Int Ed Engl 51:12997–13000
CAS
Article
Google Scholar
Wang Y, Laborda E, Plowman BJ, Tschulik K, Ward KR, Palgrave RG, Dammd C, Compton RG (2014) The strong catalytic effect of Pb(II) on the oxygen reduction reaction on 5 nm gold nanoparticles. Phys Chem Chem Phys 16:3200–3208
El-Deab MS, Sotomura T, Ohsaka T (2006) Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochim Acta 52:1792–1798
CAS
Article
Google Scholar
Vázquez-Huerta G, Ramos-Sánchez G, Antaño-López R, Solorza-Feria O (2009) Electrocatalysis of oxygen reduction on Au nanoparticles. ECS Trans 20:259–265
Article
Google Scholar
Vázquez-Huerta G, Ramos-Sánchez G, Rodríguez-Castellanos A, Meza-Calderón D, Antaño-López R, Solorza-Feria O (2010) Electrochemical analysis of the kinetics and mechanism of the oxygen reduction reaction on Au nanoparticles. J Electroanal Chem 645:35–40
Article
Google Scholar
Tang W, Lin H, Kleiman-Shwarsctein A, Stucky GD, McFarland EW (2008) Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte. J Phys Chem C 112:10515–10519
CAS
Article
Google Scholar
Jirkovsky JS, Halasa M, Schiffrin DJ (2010) Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Phys Chem Chem Phys 12:8042–8052
CAS
Article
Google Scholar
El-Deab MS, Okajima T, Ohsaka T (2003) Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J Electrochem Soc 150:A851–A857
CAS
Article
Google Scholar
Raj CR, Abdelrahman AI, Ohsaka T (2005) Gold nanoparticle-assisted electroreduction of oxygen. Electrochem Commun 7:888–893
CAS
Article
Google Scholar
Shim JH, Kim J, Lee C, Lee Y (2011) Electrocatalytic activity of gold and gold nanoparticles improved by electrochemical pretreatment. J Phys Chem C 115:305–309
CAS
Article
Google Scholar
Skwierawski A (2013) The use of the integrated trophic state index in evaluation of the restored shallow water bodies. Ecol Chem Eng A 20:1275–1283
Google Scholar
Hahn CEW (1998) Electrochemical analysis of clinical blood-gases, gases and vapors. Analyst 123:57R–86R
CAS
Article
Google Scholar
Gotti G, Fajerwerg K, Evrard D, Gros P (2014) Electrodeposited gold nanoparticles on glassy carbon: correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media. Electrochim Acta 128:412–419
CAS
Article
Google Scholar
Gotti G, Fajerwerg K, Evrard D, Gros P (2013) Kinetics of dioxygen reduction on gold and glassy carbon electrodes in neutral media. Int J Electrochem Sci 8:12643–12657
CAS
Google Scholar
Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75
Article
Google Scholar
Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London). Physical Science 241:20–22
CAS
Article
Google Scholar
Smoluchowski MV (1903) Contribution to the theory of electro-osmosis and related phenomena. Bull Int Acad Sci Cracovie 3:184–199
Google Scholar
Wiersema PH, Loeb AL, Overbeek JTG (1966) calculation of the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 22:78–99
CAS
Article
Google Scholar
Turkevich J (1985) Colloidal gold. Part I. Historical and preparative aspects, morphology and structure. Gold Bull 18:86–91
CAS
Article
Google Scholar
Su H, Zheng Q, Li H (2012) Colorimetric detection and separation of chiral tyrosine based on N-acetyl-L-cysteine modified gold nanoparticles. J Mater Chem 22:6546–6548
CAS
Article
Google Scholar
Farrag M, Tschurl M, Heiz U (2013) Chiral gold and silver nanoclusters: preparation, size selection, and chiroptical properties. Chem Mater 25:862–870
CAS
Article
Google Scholar
Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217
CAS
Article
Google Scholar
Majzik A, Patakfalvi R, Hornok V, Dékány I (2009) Growing and stability of gold nanoparticles and their functionalization by cysteine. Gold Bull 42:113–123
CAS
Article
Google Scholar
Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307
CAS
Article
Google Scholar
Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chemistry–A European J 17:6584–6593
CAS
Article
Google Scholar
Mocanu A, Cernica I, Tomoaia G, Bobos L-D, Horovitz O, Tomoaia-Cotisel M (2009) Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids Surf A Physicochem Eng Asp 338:93–101
CAS
Article
Google Scholar
Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, London, UK
Google Scholar
Jungers JC, Sajus L, de Aguirre I, Decroocq D (1968) L’analyse cinétique de la transformation chimique, Tome 2. Publications de l’Institut Français du Pétrole, Technip, Paris
Steven JT, Golovko VB, Johannessen B, Marshall AT (2016) Electrochemical stability of carbon-supported gold nanoparticles in acidic electrolyte during cyclic voltammetry. Electrochim Acta 187:593–604
CAS
Article
Google Scholar
Cruickshank AC, Downard AJ (2009) Electrochemical stability of citrate-capped gold nanoparticles electrostatically assembled on amine-modified glassy carbon. Electrochim Acta 54:5566–5570
CAS
Article
Google Scholar
Hendry EB (1962) The osmotic pressure and chemical composition of human body fluids. Human Body Fluids 8:246–265
CAS
Google Scholar
Koutecky J (1953) Kinetics of electrode processes. XI The polarographic current due to an electrode process preceded by a chemical reaction in solution between reactants differing in their diffusion coefficients. Chemicke Listy pro Vedu a Prumysl 47:1758–1761
CAS
Google Scholar
Benson BB, Krause DJ (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632
CAS
Article
Google Scholar
van Stroe AJ, Janssen LJJ (1993) Determination of the diffusion coefficient of oxygen in sodium chloride solutions with a transient pulse technique. Anal Chim Acta 279:213–219
Article
Google Scholar
Jamnongwong M, Loubiere K, Dietrich N, Hebrard G (2010) Experimental study of oxygen diffusion coefficients in clean water containing salt, glucose or surfactant: consequences on the liquid-side mass transfer coefficients. Chem Eng J 165:758–768
CAS
Article
Google Scholar
Millero FJ, Huang F, Laferiere AL (2002) Solubility of oxygen in the major sea salts as a function of concentration and temperature. Mar Chem 78:217–230
CAS
Article
Google Scholar
Mirkhalaf F, Schiffrin DJ (2010) Electrocatalytic oxygen reduction on functionalized gold nanoparticles incorporated in a hydrophobic environment. Langmuir 26:14995–15001
CAS
Article
Google Scholar
Pietron JJ, Garsany Y, Baturina O, Swider-Lyons KE, Schull TL (2007) Electrochemical observation of ligand effects on oxygen reduction at ligand-stabilized Pt nanoparticle electrocatalysts. ECS Trans 11:217–226
CAS
Article
Google Scholar