Comparative Electrochemical Charge Storage Properties of Bulk and Nanoscale Vanadium Oxide Electrodes

Abstract

Vanadium oxide nanostructures have been widely researched as a cathode material for Li-ion batteries due to their layered structure and shorter Li+ diffusion path lengths, compared to the bulk material. Some oxides exhibit charge storage due to capacitive charge compensation, and many materials with cation insertion regions and rich surface chemistry have complex responses to lithiation. Herein, detailed analysis by cyclic voltammetry was used to distinguish the charge stored due to lithium intercalation processes from extrinsic capacitive effects for micron-scale bulk V2O5 and synthesized nano-scale vanadium oxide polycrystalline nanorods (poly-NRs), designed to exhibit multivalent surface oxidation states. The results demonstrate that at fast scan rates (up to 500 mV/s), the contributions due to diffusion-controlled intercalation processes for micron-scale V2O5 and nanoscale V2O3 are found to dominate irrespective of size and multivalent surface chemistry. At slow potential scan rates, a greater portion of the redox events are capacitive in nature for the polycrystalline nanorods. Low dimensional vanadium oxide structures of V2O5 or V2O3, with greater surface area do not automatically increase their (redox) pseudocapacitive behaviour significantly at any scan rate, even with multivalent surface oxidation states.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137:3140–3156

    CAS  Article  Google Scholar 

  2. 2.

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    CAS  Article  Google Scholar 

  3. 3.

    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    CAS  Article  Google Scholar 

  4. 4.

    McSweeney W, Geaney H, O’Dwyer C (2014) Metal assisted chemical etching of silicon and the behaviour of nanoscale silicon materials as Li-ion battery anodes. Nano Res 8:1395

    Article  Google Scholar 

  5. 5.

    Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106

    CAS  Article  Google Scholar 

  6. 6.

    Hu L, Wu H, La Mantia F, Yang Y, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848

    CAS  Article  Google Scholar 

  7. 7.

    Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang J-G, Browning ND, Liu J, Wang C (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760–767

    CAS  Article  Google Scholar 

  8. 8.

    Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    CAS  Article  Google Scholar 

  9. 9.

    Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    CAS  Article  Google Scholar 

  10. 10.

    Osiak M, Geaney H, Armstrong E, O’Dwyer C (2014) Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. J Mater Chem A 2:9433–9460

    CAS  Article  Google Scholar 

  11. 11.

    Gogotsi Y (2014) What nano can do for energy storage. ACS Nano 8:5369–5371

    CAS  Article  Google Scholar 

  12. 12.

    Liu N, Hu L, McDowell MT, Jackson A, Cui Y (2011) Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5:6487–6493

    CAS  Article  Google Scholar 

  13. 13.

    Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342

    CAS  Article  Google Scholar 

  14. 14.

    Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914

    CAS  Article  Google Scholar 

  15. 15.

    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    CAS  Article  Google Scholar 

  16. 16.

    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    CAS  Article  Google Scholar 

  17. 17.

    Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522

    CAS  Article  Google Scholar 

  18. 18.

    McNulty D, Buckley DN, O’Dwyer C (2014) Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. J Power Sources 267:831–873

    CAS  Article  Google Scholar 

  19. 19.

    Whittingham MS (1976) The role of ternary phases in cathode reactions. J Electrochem Soc 123:315–320

    CAS  Article  Google Scholar 

  20. 20.

    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    CAS  Article  Google Scholar 

  21. 21.

    Periyapperuma K, Tran TT, Trussler S, Ioboni D, Obrovac M (2014) Conflat two and three electrode electrochemical cells. J Electrochem Soc 161:A2182–A2187

    CAS  Article  Google Scholar 

  22. 22.

    Qin M, Liang Q, Pan A, Liang S, Zhang Q, Tang Y, Tan X (2014) Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries. J Power Sources 268:700–705

    CAS  Article  Google Scholar 

  23. 23.

    Shao J, Li X, Wan Z, Zhang L, Ding Y, Zhang L, Qu Q, Zheng H (2013) Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries. ACS Appl Mater Interfaces 5:7671–7675

    CAS  Article  Google Scholar 

  24. 24.

    Chen X, Zhu H, Chen Y-C, Shang Y, Cao A, Hu L, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6:7948–7955

    CAS  Article  Google Scholar 

  25. 25.

    O’Dwyer C, Navas D, Lavayen V, Benavente E, Santa Ana MA, Gonzalez G, Newcomb SB, Torres CMS (2006) Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem Mater 18:3016–3022

    Article  Google Scholar 

  26. 26.

    O’Dwyer C, Lavayen V, Newcomb SB, Ana MAS, Benavente E, Gonzalez G, Torres CMS (2007) Vanadate conformation variations in vanadium pentoxide nanostructures. J Electrochem Soc 154:K29–K35

    Article  Google Scholar 

  27. 27.

    O’Dwyer C, Lavayen V, Tanner DA, Newcomb SB, Benavente E, Gonzalez G, Torres CMS (2009) Reduced surfactant uptake in three dimensional assemblies of VO(x) nanotubes improves reversible Li(+) intercalation and charge capacity. Adv Funct Mater 19:1736–1745

    Article  Google Scholar 

  28. 28.

    Carrasco J (2014) Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: alkali and alkaline-earth ion insertion into V2O5. J Phys Chem C 118:19599–19607

    CAS  Article  Google Scholar 

  29. 29.

    Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    CAS  Article  Google Scholar 

  30. 30.

    Gwon H, Hong J, Kim H, Seo D-H, Jeon S, Kang K (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7:538–551

    CAS  Article  Google Scholar 

  31. 31.

    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    CAS  Article  Google Scholar 

  32. 32.

    Marschilok AC, Davis SM, Leising RA (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219:283–310

    Google Scholar 

  33. 33.

    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Sci Mag 321:651–652

    CAS  Google Scholar 

  34. 34.

    Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull 36:513–522

    CAS  Article  Google Scholar 

  35. 35.

    Huang C, Grant PS (2013) One-step spray processing of high power all-solid-state supercapacitors. Sci Rep 3:2393

    Google Scholar 

  36. 36.

    Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S-E (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101:7717–7722

    Article  Google Scholar 

  37. 37.

    Rolison DR, Nazar LF (2011) Electrochemical energy storage to power the 21st century. MRS Bull 36:486–493

    CAS  Article  Google Scholar 

  38. 38.

    Beasley CA, Sassin MB, Long JW (2015) Extending electrochemical quartz crystal microbalance techniques to macroscale electrodes: insights on pseudocapacitance mechanisms in MnOx-coated carbon nanofoams. J Electrochem Soc 162:A5060–A5064

    CAS  Article  Google Scholar 

  39. 39.

    Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21:3571–3573

    CAS  Article  Google Scholar 

  40. 40.

    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    CAS  Article  Google Scholar 

  41. 41.

    Armstrong E, McNulty D, Geaney H, O’Dwyer C (2015) Electrodeposited structurally stable V2O5 inverse opal networks as high performance thin film lithium batteries. ACS Appl Mater Interfaces 7:27006–27015

    CAS  Article  Google Scholar 

  42. 42.

    Ghosh A, Ra EJ, Jin M, Jeong HK, Kim TH, Biswas C, Lee YH (2011) High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv Funct Mater 21:2541–2547

    CAS  Article  Google Scholar 

  43. 43.

    Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    CAS  Article  Google Scholar 

  44. 44.

    Dong W, Rolison DR, Dunna B (2000) Electrochemical properties of high surface area vanadium oxide aerogels. Electrochem Solid-State Lett 3:457–459

    CAS  Article  Google Scholar 

  45. 45.

    McNulty D, Buckley D, O’Dwyer C (2014) Polycrystalline vanadium oxide nanorods: growth, structure and improved electrochemical response as a Li-ion battery cathode material. J Electrochem Soc 161:A1321–A1329

    CAS  Article  Google Scholar 

  46. 46.

    McNulty D, Buckley DN, O’Dwyer C (2013) Structural and electrochemical characterization of thermally treated vanadium oxide nanotubes for Li-ion batteries. ECS Trans 50:165–174

    Article  Google Scholar 

  47. 47.

    Gannon G, O’Dwyer C, Larsson JA, Thompson D (2011) Interdigitating organic bilayers direct the short interlayer spacing in hybrid organic–inorganic layered vanadium oxide nanostructures. J Phys Chem B 115:14518–14525

    CAS  Article  Google Scholar 

  48. 48.

    Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectrosc Relat Phenom 71:249–261

  49. 49.

    Rauda IE, Augustyn V, Dunn B, Tolbert SH (2013) Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 46:1113–1124

    CAS  Article  Google Scholar 

  50. 50.

    Delmas C, Brèthes S, Ménétrier M (1991) ω-LixV2O5—a new electrode material for rechargeable lithium batteries. J Power Sources 34:113–118

    CAS  Article  Google Scholar 

  51. 51.

    Brezesinski K, Haetge J, Wang J, Mascotto S, Reitz C, Rein A, Tolbert SH, Perlich J, Dunn B, Brezesinski T (2011) Ordered mesoporous α-Fe2O3 (Hematite) thin-film electrodes for application in high rate rechargeable lithium batteries. Small 7:407–414

    CAS  Article  Google Scholar 

  52. 52.

    Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    CAS  Article  Google Scholar 

  53. 53.

    Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522

    CAS  Article  Google Scholar 

  54. 54.

    Cao AM, Hu JS, Liang HP, Wan LJ (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed 44:4391–4395

    CAS  Article  Google Scholar 

  55. 55.

    Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269

    CAS  Article  Google Scholar 

  56. 56.

    Wang Y, Takahashi K, Lee KH, Cao G (2006) Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Mater 16:1133–1144

    CAS  Article  Google Scholar 

  57. 57.

    Delmas C, Cognac-Auradou H, Cocciantelli JM, Ménétrier M, Doumerc JP (1994) The LixV2O5 system: an overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69:257–264

    CAS  Article  Google Scholar 

  58. 58.

    Cava RJ, Santoro A, Murphy DW, Zahurak SM, Fleming RM, Marsh P, Roth RS (1986) The structure of the lithium-inserted metal oxide δLiV2O5. J Solid State Chem 65:63–71

    CAS  Article  Google Scholar 

  59. 59.

    Leger C, Bach S, Soudan P, Pereira-Ramos J-P (2005) Structural and electrochemical properties of ω-LixV2O5 (0.4⩽ x⩽ 3) as rechargeable cathodic material for lithium batteries. J Electrochem Soc 152:A236–A241

    CAS  Article  Google Scholar 

  60. 60.

    Cocciantelli JM, Doumerc JP, Pouchard M, Broussely M, Labat J (1991) Crystal chemistry of electrochemically inserted LixV2O5. J Power Sources 34:103–111

    CAS  Article  Google Scholar 

  61. 61.

    Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc 131:1802–1809

    CAS  Article  Google Scholar 

  62. 62.

    Li G, Zhang C, Peng H, Chen K (2009) One-dimensional V2O5@ polyaniline core/shell nanobelts synthesized by an in situ polymerization method. Macromol Rapid Commun 30:1841–1845

    CAS  Article  Google Scholar 

  63. 63.

    Zukalová M, Kalbáč M, Kavan L, Exnar I, Graetzel M (2005) Pseudocapacitive lithium storage in TiO2(B). Chem Mater 17:1248–1255

    Article  Google Scholar 

  64. 64.

    Sathiya M, Prakash A, Ramesha K, Tarascon JM, Shukla A (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133:16291–16299

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This publication has emanated from research conducted with the financial support of the Charles Parsons Initiative and Science Foundation Ireland (SFI) under Grant No. 06/CP/E007. Part of this work was conducted under the framework of the INSPIRE programme, funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013. We acknowledge support from Science Foundation Ireland under a Technology Innovation and Development Award no. 13/TIDA/E2761. This research has received funding from the Seventh Framework Programme FP7/2007-2013 (Project STABLE) under grant agreement no. 314508. This publication has also emanated from research supported in part by a research grant from SFI under Grant 14/IA/2581.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Colm O’Dwyer.

Electronic supplementary material

ESM 1

(DOCX 1932 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McNulty, D., Buckley, D.N. & O’Dwyer, C. Comparative Electrochemical Charge Storage Properties of Bulk and Nanoscale Vanadium Oxide Electrodes. J Solid State Electrochem 20, 1445–1458 (2016). https://doi.org/10.1007/s10008-016-3154-2

Download citation

Keywords

  • Specific Capacity
  • Vanadium Oxide
  • Intercalation Process
  • Diffusion Path Length
  • Capacitive Effect