Journal of Solid State Electrochemistry

, Volume 20, Issue 5, pp 1445–1458 | Cite as

Comparative Electrochemical Charge Storage Properties of Bulk and Nanoscale Vanadium Oxide Electrodes

  • David McNulty
  • D. Noel Buckley
  • Colm O’Dwyer
Original Paper


Vanadium oxide nanostructures have been widely researched as a cathode material for Li-ion batteries due to their layered structure and shorter Li+ diffusion path lengths, compared to the bulk material. Some oxides exhibit charge storage due to capacitive charge compensation, and many materials with cation insertion regions and rich surface chemistry have complex responses to lithiation. Herein, detailed analysis by cyclic voltammetry was used to distinguish the charge stored due to lithium intercalation processes from extrinsic capacitive effects for micron-scale bulk V2O5 and synthesized nano-scale vanadium oxide polycrystalline nanorods (poly-NRs), designed to exhibit multivalent surface oxidation states. The results demonstrate that at fast scan rates (up to 500 mV/s), the contributions due to diffusion-controlled intercalation processes for micron-scale V2O5 and nanoscale V2O3 are found to dominate irrespective of size and multivalent surface chemistry. At slow potential scan rates, a greater portion of the redox events are capacitive in nature for the polycrystalline nanorods. Low dimensional vanadium oxide structures of V2O5 or V2O3, with greater surface area do not automatically increase their (redox) pseudocapacitive behaviour significantly at any scan rate, even with multivalent surface oxidation states.


Specific Capacity Vanadium Oxide Intercalation Process Diffusion Path Length Capacitive Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This publication has emanated from research conducted with the financial support of the Charles Parsons Initiative and Science Foundation Ireland (SFI) under Grant No. 06/CP/E007. Part of this work was conducted under the framework of the INSPIRE programme, funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013. We acknowledge support from Science Foundation Ireland under a Technology Innovation and Development Award no. 13/TIDA/E2761. This research has received funding from the Seventh Framework Programme FP7/2007-2013 (Project STABLE) under grant agreement no. 314508. This publication has also emanated from research supported in part by a research grant from SFI under Grant 14/IA/2581.

Supplementary material

10008_2016_3154_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1932 kb)


  1. 1.
    Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137:3140–3156CrossRefGoogle Scholar
  2. 2.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  3. 3.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430CrossRefGoogle Scholar
  4. 4.
    McSweeney W, Geaney H, O’Dwyer C (2014) Metal assisted chemical etching of silicon and the behaviour of nanoscale silicon materials as Li-ion battery anodes. Nano Res 8:1395CrossRefGoogle Scholar
  5. 5.
    Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106CrossRefGoogle Scholar
  6. 6.
    Hu L, Wu H, La Mantia F, Yang Y, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848CrossRefGoogle Scholar
  7. 7.
    Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang J-G, Browning ND, Liu J, Wang C (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760–767CrossRefGoogle Scholar
  8. 8.
    Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  9. 9.
    Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  10. 10.
    Osiak M, Geaney H, Armstrong E, O’Dwyer C (2014) Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. J Mater Chem A 2:9433–9460CrossRefGoogle Scholar
  11. 11.
    Gogotsi Y (2014) What nano can do for energy storage. ACS Nano 8:5369–5371CrossRefGoogle Scholar
  12. 12.
    Liu N, Hu L, McDowell MT, Jackson A, Cui Y (2011) Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5:6487–6493CrossRefGoogle Scholar
  13. 13.
    Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342CrossRefGoogle Scholar
  14. 14.
    Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914CrossRefGoogle Scholar
  15. 15.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211CrossRefGoogle Scholar
  16. 16.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  17. 17.
    Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522CrossRefGoogle Scholar
  18. 18.
    McNulty D, Buckley DN, O’Dwyer C (2014) Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. J Power Sources 267:831–873CrossRefGoogle Scholar
  19. 19.
    Whittingham MS (1976) The role of ternary phases in cathode reactions. J Electrochem Soc 123:315–320CrossRefGoogle Scholar
  20. 20.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302CrossRefGoogle Scholar
  21. 21.
    Periyapperuma K, Tran TT, Trussler S, Ioboni D, Obrovac M (2014) Conflat two and three electrode electrochemical cells. J Electrochem Soc 161:A2182–A2187CrossRefGoogle Scholar
  22. 22.
    Qin M, Liang Q, Pan A, Liang S, Zhang Q, Tang Y, Tan X (2014) Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries. J Power Sources 268:700–705CrossRefGoogle Scholar
  23. 23.
    Shao J, Li X, Wan Z, Zhang L, Ding Y, Zhang L, Qu Q, Zheng H (2013) Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries. ACS Appl Mater Interfaces 5:7671–7675CrossRefGoogle Scholar
  24. 24.
    Chen X, Zhu H, Chen Y-C, Shang Y, Cao A, Hu L, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6:7948–7955CrossRefGoogle Scholar
  25. 25.
    O’Dwyer C, Navas D, Lavayen V, Benavente E, Santa Ana MA, Gonzalez G, Newcomb SB, Torres CMS (2006) Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem Mater 18:3016–3022CrossRefGoogle Scholar
  26. 26.
    O’Dwyer C, Lavayen V, Newcomb SB, Ana MAS, Benavente E, Gonzalez G, Torres CMS (2007) Vanadate conformation variations in vanadium pentoxide nanostructures. J Electrochem Soc 154:K29–K35CrossRefGoogle Scholar
  27. 27.
    O’Dwyer C, Lavayen V, Tanner DA, Newcomb SB, Benavente E, Gonzalez G, Torres CMS (2009) Reduced surfactant uptake in three dimensional assemblies of VO(x) nanotubes improves reversible Li(+) intercalation and charge capacity. Adv Funct Mater 19:1736–1745CrossRefGoogle Scholar
  28. 28.
    Carrasco J (2014) Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: alkali and alkaline-earth ion insertion into V2O5. J Phys Chem C 118:19599–19607CrossRefGoogle Scholar
  29. 29.
    Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRefGoogle Scholar
  30. 30.
    Gwon H, Hong J, Kim H, Seo D-H, Jeon S, Kang K (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7:538–551CrossRefGoogle Scholar
  31. 31.
    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931CrossRefGoogle Scholar
  32. 32.
    Marschilok AC, Davis SM, Leising RA (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219:283–310Google Scholar
  33. 33.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Sci Mag 321:651–652Google Scholar
  34. 34.
    Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull 36:513–522CrossRefGoogle Scholar
  35. 35.
    Huang C, Grant PS (2013) One-step spray processing of high power all-solid-state supercapacitors. Sci Rep 3:2393Google Scholar
  36. 36.
    Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S-E (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101:7717–7722CrossRefGoogle Scholar
  37. 37.
    Rolison DR, Nazar LF (2011) Electrochemical energy storage to power the 21st century. MRS Bull 36:486–493CrossRefGoogle Scholar
  38. 38.
    Beasley CA, Sassin MB, Long JW (2015) Extending electrochemical quartz crystal microbalance techniques to macroscale electrodes: insights on pseudocapacitance mechanisms in MnOx-coated carbon nanofoams. J Electrochem Soc 162:A5060–A5064CrossRefGoogle Scholar
  39. 39.
    Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21:3571–3573CrossRefGoogle Scholar
  40. 40.
    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151CrossRefGoogle Scholar
  41. 41.
    Armstrong E, McNulty D, Geaney H, O’Dwyer C (2015) Electrodeposited structurally stable V2O5 inverse opal networks as high performance thin film lithium batteries. ACS Appl Mater Interfaces 7:27006–27015CrossRefGoogle Scholar
  42. 42.
    Ghosh A, Ra EJ, Jin M, Jeong HK, Kim TH, Biswas C, Lee YH (2011) High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv Funct Mater 21:2541–2547CrossRefGoogle Scholar
  43. 43.
    Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894CrossRefGoogle Scholar
  44. 44.
    Dong W, Rolison DR, Dunna B (2000) Electrochemical properties of high surface area vanadium oxide aerogels. Electrochem Solid-State Lett 3:457–459CrossRefGoogle Scholar
  45. 45.
    McNulty D, Buckley D, O’Dwyer C (2014) Polycrystalline vanadium oxide nanorods: growth, structure and improved electrochemical response as a Li-ion battery cathode material. J Electrochem Soc 161:A1321–A1329CrossRefGoogle Scholar
  46. 46.
    McNulty D, Buckley DN, O’Dwyer C (2013) Structural and electrochemical characterization of thermally treated vanadium oxide nanotubes for Li-ion batteries. ECS Trans 50:165–174CrossRefGoogle Scholar
  47. 47.
    Gannon G, O’Dwyer C, Larsson JA, Thompson D (2011) Interdigitating organic bilayers direct the short interlayer spacing in hybrid organic–inorganic layered vanadium oxide nanostructures. J Phys Chem B 115:14518–14525CrossRefGoogle Scholar
  48. 48.
    Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectrosc Relat Phenom 71:249–261Google Scholar
  49. 49.
    Rauda IE, Augustyn V, Dunn B, Tolbert SH (2013) Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 46:1113–1124CrossRefGoogle Scholar
  50. 50.
    Delmas C, Brèthes S, Ménétrier M (1991) ω-LixV2O5—a new electrode material for rechargeable lithium batteries. J Power Sources 34:113–118CrossRefGoogle Scholar
  51. 51.
    Brezesinski K, Haetge J, Wang J, Mascotto S, Reitz C, Rein A, Tolbert SH, Perlich J, Dunn B, Brezesinski T (2011) Ordered mesoporous α-Fe2O3 (Hematite) thin-film electrodes for application in high rate rechargeable lithium batteries. Small 7:407–414CrossRefGoogle Scholar
  52. 52.
    Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918CrossRefGoogle Scholar
  53. 53.
    Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522CrossRefGoogle Scholar
  54. 54.
    Cao AM, Hu JS, Liang HP, Wan LJ (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed 44:4391–4395CrossRefGoogle Scholar
  55. 55.
    Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRefGoogle Scholar
  56. 56.
    Wang Y, Takahashi K, Lee KH, Cao G (2006) Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Mater 16:1133–1144CrossRefGoogle Scholar
  57. 57.
    Delmas C, Cognac-Auradou H, Cocciantelli JM, Ménétrier M, Doumerc JP (1994) The LixV2O5 system: an overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69:257–264CrossRefGoogle Scholar
  58. 58.
    Cava RJ, Santoro A, Murphy DW, Zahurak SM, Fleming RM, Marsh P, Roth RS (1986) The structure of the lithium-inserted metal oxide δLiV2O5. J Solid State Chem 65:63–71CrossRefGoogle Scholar
  59. 59.
    Leger C, Bach S, Soudan P, Pereira-Ramos J-P (2005) Structural and electrochemical properties of ω-LixV2O5 (0.4⩽ x⩽ 3) as rechargeable cathodic material for lithium batteries. J Electrochem Soc 152:A236–A241CrossRefGoogle Scholar
  60. 60.
    Cocciantelli JM, Doumerc JP, Pouchard M, Broussely M, Labat J (1991) Crystal chemistry of electrochemically inserted LixV2O5. J Power Sources 34:103–111CrossRefGoogle Scholar
  61. 61.
    Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc 131:1802–1809CrossRefGoogle Scholar
  62. 62.
    Li G, Zhang C, Peng H, Chen K (2009) One-dimensional V2O5@ polyaniline core/shell nanobelts synthesized by an in situ polymerization method. Macromol Rapid Commun 30:1841–1845CrossRefGoogle Scholar
  63. 63.
    Zukalová M, Kalbáč M, Kavan L, Exnar I, Graetzel M (2005) Pseudocapacitive lithium storage in TiO2(B). Chem Mater 17:1248–1255CrossRefGoogle Scholar
  64. 64.
    Sathiya M, Prakash A, Ramesha K, Tarascon JM, Shukla A (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133:16291–16299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David McNulty
    • 1
  • D. Noel Buckley
    • 2
    • 3
  • Colm O’Dwyer
    • 1
    • 4
  1. 1.Department of ChemistryUniversity College CorkCorkIreland
  2. 2.Department of Physics and EnergyUniversity of LimerickLimerickIreland
  3. 3.Materials & Surface Science InstituteUniversity of LimerickLimerickIreland
  4. 4.Micro-Nano Systems CentreTyndall National InstituteCorkIreland

Personalised recommendations