Skip to main content
Log in

Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, a new polythiophene-coated silicon composite anode material was prepared by in situ chemical oxidation polymerization method. The structure of this material was characterized by infrared spectroscopy, which proved that the oxidative polymerization of thiophene occurred mainly in α position. The polythiophene can provide the better electric contact between silicon particles. Therefore, the as-prepared Si/polythiophene composite electrodes achieve better cycling performance than the bare Si anode. The specific capacity of the composite electrode retains 478 mA h g−1 after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gao P, Yang J (2011) Si-based composite anode materials for Li-ion batteries. Progress in Chemistry 23(0203):264–274

    CAS  Google Scholar 

  2. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  CAS  Google Scholar 

  3. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429

    Article  CAS  Google Scholar 

  4. Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7(10):A306–A309

    Article  CAS  Google Scholar 

  5. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science 4(1):56–72

    Article  CAS  Google Scholar 

  6. Xu Y, Yin G, Ma Y, Zuo P, Cheng X (2010) Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J Mater Chem 20(16):3216–3220

    Article  CAS  Google Scholar 

  7. Wang B, Li X, Qiu T, Luo B, Ning J, Li J, Zhang X, Liang M, Zhi L (2013) High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett 13(11):5578–5584

    Article  CAS  Google Scholar 

  8. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310–315

    Article  CAS  Google Scholar 

  9. Xia F, Kim SB, Cheng H, Lee JM, Song T, Huang Y, Rogers JA, Paik U, Park WI (2013) Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. Nano Lett 13(7):3340–3346

    Article  CAS  Google Scholar 

  10. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217

    Article  CAS  Google Scholar 

  11. Guo S, Li H, Bai H, Tao Z, Chen J (2014) Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. J Power Sources 248:1141–1148

    Article  CAS  Google Scholar 

  12. Nishide H, Oyaizu K (2008) Toward flexible batteries. Science (New York, NY) 319(5864):737–738

    Article  CAS  Google Scholar 

  13. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science (New York, NY) 327(5973):1603–1607

    Article  CAS  Google Scholar 

  14. Naoi K, Morita M (2008) Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. The Electrochemical Society Interface 17(1):44–48

    CAS  Google Scholar 

  15. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  16. Laforgue A, Robitaille L (2010) Deposition of ultrathin coatings of polypyrrole and poly(3,4-ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chem Mater 22(8):2474–2480

    Article  CAS  Google Scholar 

  17. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9(10):3635–3639

    Article  Google Scholar 

  18. Tu J, Hu L, Wang W, Hou J, Zhu H, Jiao S (2013) In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries. J Electrochem Soc 160(10):A1916–A1921

    Article  CAS  Google Scholar 

  19. Du Z, Zhang S, Liu Y, Zhao J, Lin R, Jiang T (2012) Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage. J Mater Chem 22(23):11636–11641

    Article  CAS  Google Scholar 

  20. Liu L, Tian F, Wang X, Yang Z, Zhou M, Wang X (2012) Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability. React Funct Polym 72(1):45–49

    Article  CAS  Google Scholar 

  21. Geetha S, Trivedi DC (2005) A new route to synthesize high degree polythiophene in a room temperature melt medium. Synth Met 155(1):232–239

    Article  CAS  Google Scholar 

  22. Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115(13):6057–6063

    Article  CAS  Google Scholar 

  23. Chew SY, Guo ZP, Wang JZ, Chen J, Munroe P, Ng SH, Zhao L, Liu HK (2007) Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem Commun 9(5):941–946

    Article  CAS  Google Scholar 

  24. Guo H, Liu L, Shu H, Yang X, Yang Z, Zhou M, Tan J, Yan Z, Hu H, Wang X (2014) Synthesis and electrochemical performance of LiV3O8/polythiophene composite as cathode materials for lithium ion batteries. J Power Sources 247:117–126

    Article  CAS  Google Scholar 

  25. Yao Y, Liu N, McDowell MT, Pasta M, Cui Y (2012) Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy & Environmental Science 5(7):7927–7930

    Article  CAS  Google Scholar 

  26. Ruffo R, Hong SS, Chan CK, Huggins RA, Cui Y (2009) Impedance analysis of silicon nanowire lithium ion battery anodes. J Phys Chem C 113(26):11390–11398

    Article  CAS  Google Scholar 

  27. Y-m B, Qiu P, Z-l W, S-c H (2010) Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. J Alloys Compd 508(1):1–4

    Article  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the Programmed for Changing Scholars and Innovative Research Team in University (IRT_15R56), the Foundation of Northwest Normal University (NWNU-LKQN-13-5), the Programmed for Colleges and Universities in Gansu Province (2014A-011), and Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education and Key Laboratory of Polymer Materials of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. T. Wang or Z. Q. Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q.T., Li, R.R., Zhou, X.Z. et al. Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries. J Solid State Electrochem 20, 1331–1336 (2016). https://doi.org/10.1007/s10008-016-3127-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3127-5

Keywords

Navigation