Skip to main content
Log in

A tunable hierarchical porous carbon from starch pretreated by calcium acetate for high performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hierarchical porous carbons (HPCs) with abundant mesopores have been prepared by a facile route from the starch that was pretreated by calcium acetate. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N2 adsorption–desorption tests show that hierarchical porous carbons with bimodal mesopores have been obtained. Moreover, the pore sizes are tunable by simply adjusting the reactants ratio and carbonization temperature. The as-synthesized hierarchical porous carbon materials (HPCs-2-800) possesses the highest Brunauer-Emmett-Teller (BET)-specific surface area of 464 m2 g−1 and mesoporous volume of 0.663 cm3 g−1 at the carbonization temperature of 800 °C and starch to calcium acetate mass ratio of 2. Electrochemical measurements also display that the HPCs-2-800 electrodes have a high reversible capacity of 244 F g−1 at the current density of 0.1 A g−1 and 182 F g−1 at the current density of 10 A g−1. When the current density is elevated from 0.1 to 10 A g−1, the high capacitance retention of 74.6 % reveals a good rate performance. Long charge–discharge cycling measurements disclose good stabilities over 25,000 cycles at different current densities of 1–10 A g−1 (5000 cycles at each current density) for HPCs-2-800 electrode. The cycling results indicate a high capacitance retention of 99.6 % over 5000 charge–discharge cycles even at the current density of 10 A g−1. The excellent supercapacitive performances imply that HPCs-2-800 is a promising candidate for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang XP, Niu CJ, Meng JS, Hu P, Xu XM, Wei XJ, Zhou L, Zhao KN, Luo W, Yan MY, Mai LQ (2015) Adv Energy Mater 5:1500716

    Google Scholar 

  2. Cai ZY, Xu L, Yan MY, Han CH, He L, Hercule KM, Niu CJ, Yuan ZF, Xu WW, Qu LB, Zhao KN, Mai LQ (2015) Nano Lett 15:738–744

    Article  CAS  Google Scholar 

  3. Kang DY, Moon JH (2014) ACS Appl Mater Interfaces 6:706–711

    Article  CAS  Google Scholar 

  4. Lei D, Devarayan K, Seo MK, Kim YG, Kim BS (2015) Mater Lett 154:173–176

    Article  CAS  Google Scholar 

  5. Zhao Q, Wang X, Xia H, Liu J, Wang H, Gao J, Zhang Y, Liu J, Zhou H, Li X, Zhang S, Wang X (2015) Electrochim Acta 173:566–574

    Article  CAS  Google Scholar 

  6. Jeon JW, Sharma R, Meduri P, Arey BW, Schaef HT, Lutkenhaus JL, Lemmon JP, Thallapally PK, Nandasiri MI, McGrail BP, Nune SK (2014) ACS Appl Mater Interfaces 6:7214–7222

    Article  CAS  Google Scholar 

  7. Xu B, Yue S, Qiao N, Chu M, Wei G (2014) Mater Lett 131:49–52

    Article  CAS  Google Scholar 

  8. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Carbon 44:216–224

    Article  CAS  Google Scholar 

  9. Fang B, Bonakdarpour A, Kim MS, Kim JH, Wilkinson DP, Yu JS (2013) Microporous Mesoporous Mater 182:1–7

    Article  CAS  Google Scholar 

  10. Bai MH, Bian LJ, Song Y, Liu XX (2014) ACS Appl Mater Interfaces 6:12656–12664

    Article  CAS  Google Scholar 

  11. Oschatz M, Borchardt L, Rico-Frances S, Rodriguez-Reinoso F, Kaskel S, Sivestre-Abero J (2013) Langmuir 29:8133–8139

    Article  CAS  Google Scholar 

  12. Qin C, Chen Y, Gao JM (2014) Mater Lett 135:123–126

    Article  CAS  Google Scholar 

  13. Liu H, Cao CY, Wei FF, Jiang Y, Sun YB, Huang PP, Song WG (2013) J Phys Chem C 117:21426–21432

    Article  CAS  Google Scholar 

  14. Wu GP, Yang J, Wang D, Xu R, Amine K, Lu CX (2014) Mater Lett 115:1–4

    Article  CAS  Google Scholar 

  15. Li T, Yang G, Wang J, Zhou Y, Han H (2013) J Solid State Electrochem 17:2651–2660

    Article  CAS  Google Scholar 

  16. Bello A, Barzegar F, Momodu D, Dangbegnon J, Taghizadeh F, Manyala N (2015) Electrochim Acta 151:386–392

    Article  CAS  Google Scholar 

  17. Milczarek G, Ciszewski A, Stepniak I (2011) J Power Sources 196:7882–7885

    Article  CAS  Google Scholar 

  18. Wei T, Wei X, Gao Y, Li H (2015) Electrochim Acta 169:186–194

    Article  CAS  Google Scholar 

  19. Misnon II, Zain NKM, Abd Aziz R, Vidyadharan B, Jose R (2015) Electrochim Acta 174:78–86

    Article  CAS  Google Scholar 

  20. Kerisit S, Schwenzer B, Vijayakumar M (2014) J Phys Chem Lett 5:2330–2334

    Article  CAS  Google Scholar 

  21. Zhu L, Gao Q, Tan Y, Tian W, Xu J, Yang K, Yang C (2015) Microporous Mesoporous Mater 210:1–9

    Article  CAS  Google Scholar 

  22. Zhu D, Wang Y, Gan L, Liu M, Cheng K, Zhao Y, Deng X, Sun D (2015) Electrochim Acta 158:166–174

    Article  CAS  Google Scholar 

  23. Qiang R, Hu Z, Yang Y, Li Z, An N, Ren X, Hu H, Wu H (2015) Electrochim Acta 167:303–310

    Article  CAS  Google Scholar 

  24. Li QQ, Liu F, Zhang L, Nelson BJ, Zhang SH, Ma C, Tao XY, Cheng JP, Zhang XB (2012) J Power Sources 207:199–204

    Article  CAS  Google Scholar 

  25. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrochim Acta 136:204–216

    Article  CAS  Google Scholar 

  26. Shukur MF, Kadir MFZ (2015) Electrochim Acta 158:152–165

    Article  CAS  Google Scholar 

  27. Wang H, Zhong Y, Li Q, Yang J, Dai Q (2008) J Phys Chem Solids 69:2420–2425

    Article  CAS  Google Scholar 

  28. De la Fuente Salas IM, Sudhakar YN, Selvakumar M (2014) App Surf Sci 296:195–203

    Article  Google Scholar 

  29. Chang B, Guo Y, Li Y, Yin H, Zhang S, Yang B, Dong X (2015) J Mater Chem A 3:9565–9577

    Article  CAS  Google Scholar 

  30. Hao Q, Xia X, Lei W, Wang W, Qiu J (2015) Carbon 81:552–563

    Article  CAS  Google Scholar 

  31. Shivakumara S, Kishore B, Penki TR, Munichandraiah N (2014) Solid State Commun 199:26–32

    Article  CAS  Google Scholar 

  32. Babu IM, Purushothaman KK, Muralidharan G (2015) J Mater Chem A 3:420–427

    Article  CAS  Google Scholar 

  33. Jana M, Saha S, Khanra P, Samanta P, Koo H, Murmu NC, Kuila T (2015) J Mater Chem A 3:7323–7331

    Article  CAS  Google Scholar 

  34. Lee CW, Yoon SB, Kim HK, Youn HC, Han J, Roh KC, Kim KB (2015) J Mater Chem A 3:2314–2322

    Article  CAS  Google Scholar 

  35. Ferrero GA, Sevilla M, Fuertes AB (2015) Carbon 88:239–251

    Article  CAS  Google Scholar 

  36. Sahu V, Shekhar S, Sharma RK, Singh G (2015) ACS Appl Mater Interfaces 7:3110–3116

    Article  CAS  Google Scholar 

  37. Ma X, Zhang F, Zhu J, Yu L, Liu X (2014) Bioresour Technol 164:1–6

    Article  CAS  Google Scholar 

  38. Peng H, Ma G, Sun K, Mu J, Zhang Z, Lei Z (2014) ACS Appl Mater Interfaces 6:20795–20803

    Article  CAS  Google Scholar 

  39. Peng XY, Liu XX, Diamond D, Lau KT (2011) Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  40. Talbi H, Just PE, Dao LH (2003) J Appl Electrochem 33:465–473

    Article  CAS  Google Scholar 

  41. Choudhury A, Bonso JS, Wunch M, Yang KS, Ferraris JP, Yang DJ (2015) J Power Sources 287:283–290

    Article  CAS  Google Scholar 

  42. Cui X, Lv R, Sagar RUR, Liu C, Zhang Z (2015) Electrochim Acta 169:342–350

    Article  CAS  Google Scholar 

  43. Geng X, Li L, Li F (2015) Electrochim Acta 168:25–31

    Article  CAS  Google Scholar 

  44. Fan Y, Yang X, Zhu B, Liu PF, Lu HT (2014) J Power Sources 268:584–590

    Article  CAS  Google Scholar 

  45. Fang X, Zang J, Wang X, Zheng MS, Zheng N (2014) J Mater Chem A 2:6191–6197

    Article  CAS  Google Scholar 

  46. Pan Y, Zeng F, Huang Z, Zhou H, Kuang Y (2015) Electrochim Acta 172:71–76

    Article  CAS  Google Scholar 

  47. Yan D, Li Y, Liu Y, Zhuo R, Geng B, Wu Z, Wang J, Ren P, Yan P (2015) Electrochim Acta 169:317–325

    Article  CAS  Google Scholar 

  48. Chang J, Gao Z, Wang X, Wu D, Xu F, Wang X, Guo Y, Jiang K (2015) Electrochim Acta 157:290–298

    Article  CAS  Google Scholar 

  49. Chen J, Liu Y, Li W, Wu C, Xu L, Yang H (2015) J Mater Sci 50:5466–5474

    Article  CAS  Google Scholar 

  50. Huang X, Wang Q, Chen XY, Zhang ZJ (2015) J Electroanal Chem 748:23–33

    Article  CAS  Google Scholar 

  51. Luo M, Dou Y, Kang H, Ma Y, Ding X, Liang B, Ma B, Li L (2015) J Solid State Electrochem 19:1621–1631

    Article  CAS  Google Scholar 

  52. Wang Y, Chang B, Guan D, Dong X (2015) J Solid State Electrochem 19:1783–1791

    Article  CAS  Google Scholar 

  53. Zeng J, Cao Q, Wang X, Jing B, Peng X, Tang X (2015) J Solid State Electrochem 19:1591–1597

    Article  CAS  Google Scholar 

  54. Yuan Y, Zhang C, Wang C, Chen M (2015) J Solid State Electrochem 19:619–627

    Article  CAS  Google Scholar 

  55. Zhang YQ, Jia MM, Gao HY, Yu JG, Wang LL, Zou YS, Qin FM, Zhao YN (2015) Electrochim Acta 184:32–39

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundations of Tianjin (No. 14JCYBJC17500 and 15JCQNJC05700), the Natural Science Foundations of China (No. 21271138), and the National Students’ Platform for Innovation and Entrepreneurship Training Program (No. 201410058053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Yu or Yongnan Zhao.

Electronic supplementary material

ESM 1

(DOC 1.29 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jia, M., Yu, J. et al. A tunable hierarchical porous carbon from starch pretreated by calcium acetate for high performance supercapacitors. J Solid State Electrochem 20, 733–741 (2016). https://doi.org/10.1007/s10008-015-3101-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3101-7

Keywords

Navigation