Skip to main content

Advertisement

Log in

PVDF/PAN/SiO2 polymer electrolyte membrane prepared by combination of phase inversion and chemical reaction method for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

PVDF/PAN/SiO2 polymer electrolyte membranes based on non-woven fabrics were prepared via introducing a chemical reaction into Loeb-Sourirajan (L-S) phase inversion process. It was found that physical properties (porosity, electrolyte uptake and ionic conductivity) and electrochemical properties were obviously improved. A favorable membrane structure with fully connective porous and uniform pore size distribution was obtained. The effects of PVDF/PAN weight ratio on the morphology, crystallinity, porosity, and electrochemical performances of membranes were studied. The optimized PVDF/PAN (70/30 w/w) (designated as Mpc30) polymer electrolyte membrane delivered excellent electrolyte uptake of 246.8 % and the highest ionic conductivity of 3.32 × 10−3 S/cm with electrochemical stability up to 5.0 V (vs. Li/Li+). In terms of cell performance, the Li/Mpc30 polymer electrolyte/LiFePO4 battery exhibited satisfactory electrochemical properties including high discharge capacity of 149 mAh/g at 0.2 C rate and good discharge performance at different current densities. The promising results reported here clearly indicated that PVDF/PAN/SiO2 polymer electrolyte membranes prepared by the combination of phase inversion and chemical reaction method were promising enough to be applied in power lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  CAS  Google Scholar 

  3. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Article  CAS  Google Scholar 

  4. Chen H, Lin Q, Xu Q, Yang Y, Shao Z, Wang Y (2014) Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J Membr Sci 458:217–224

    Article  CAS  Google Scholar 

  5. Kim KJ, Kim JH, Park MS, Kwon HK, Kim H, Kim YJ (2012) Enhancement of electrochemical and thermal properties of polyethylene separator scoated with polyvinylidenefluoride-hexafluoropropylene co-polymer for Li-ion batteries. J Power Sources 198:298–302

    Article  CAS  Google Scholar 

  6. Seol WH, Lee YM, Park JK (2006) Preparation and characterization of new microporous stretched membrane for lithium rechargeable battery. J Power Sources 163:247–251

    Article  CAS  Google Scholar 

  7. Jung HR, Ju DH, Lee WJ, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54:3630–3637

    Article  CAS  Google Scholar 

  8. Xi JY, Qiu XP, Li J, Tang XZ, Zhu WT, Chen LQ (2006) PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J Power Sources 157:501–506

    Article  CAS  Google Scholar 

  9. Li ZH, Zhang P, Zhang HP, Wu YP, Zhou XD (2008) A lotus root-like porous nanocomposite polymer electrolyte. Electrochem Commun 10:791–794

    Article  CAS  Google Scholar 

  10. Oh B, Kim YR (1999) Evaluation and characteristics of a blend polymer for a solid polymer electrolyte. Solid State Ionics 124:83–89

    Article  CAS  Google Scholar 

  11. Li H, Chen YM, Ma XT, Shi JL, Zhu BK, Zhu LP (2011) Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. J Membr Sci 379:397–402

    Article  CAS  Google Scholar 

  12. Gopalan AI, Lee KP, Manesh KM, Santhosh P (2008) Poly(vinylidene fluoride)–polydiphenylamine composite electrospun membrane as high performance polymer electrolyte for lithium batteries. J Membr Sci 318:422–428

    Article  CAS  Google Scholar 

  13. Zhou L, Wu N, Cao Q, Jing B, Wang XY, Wang Q, Kuang H (2013) A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. Solid State Ionics 249:93–97

    Article  Google Scholar 

  14. Raghavan P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah CW (2008) Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries. J Power Sources 184:437–443

    Article  CAS  Google Scholar 

  15. Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah CW (2008) Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers. Electrochim Acta 54:228–234

    Article  CAS  Google Scholar 

  16. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) J Power Sources 97:644–648

    Article  Google Scholar 

  17. Zhu YS, Wang FX, Liu LL, Xiao SY, Chang Z, Wu YP (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6:618–624

    Article  CAS  Google Scholar 

  18. Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M (2007) Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem Solid-State Lett 10:A159–A162

    Article  CAS  Google Scholar 

  19. Cho T, Tanak M, Onishi H, Kondo Y, Nakamur T, Yamazaki H, Tanase S, Sakai T (2008) Silica-composite nonwoven separators for lithium-ion battery: development and characterization. J Electrochem Soc 155:A699–A703

    Article  CAS  Google Scholar 

  20. Yang S, Liu Z, Chen H (2005) A gas–liquid chemical reaction treatment and phase inversion technique for formation of high permeability PAN UF membranes. J Membr Sci 246:7–12

    Article  CAS  Google Scholar 

  21. Wang M, Wu L, Gao CJ (2006) The influence of phase inversion process modified by chemical reaction on membrane properties and morphology. J Membr Sci 270:154–161

    Article  CAS  Google Scholar 

  22. Wang S, Wang Z, Zhang Y, Wu W, Liu D, Zhang X (2005) Experimental study of the control of pore sizes of porous membranes applying chemicals methods. Desalination 177:7–13

    Article  CAS  Google Scholar 

  23. Yang WT, Wang Z, Zhou YN, Ye X, Shi LY, Cheng LN, Chen N, Dong WY, Zhang Q, Zhang XM (2013) Study on the control of pore sizes of membranes using chemical methods part IV. The role of organic acids. Desalination 324:57–64

    Article  CAS  Google Scholar 

  24. Liang YL, Wang Z, Ye X, Li WJ, Xi XJ, Yang LY, Wang XY, Zhang J, Liu Y, Cai ZQ (2011) Study on the control of pore sizes of membranes using chemical methods part III. The performance of carbonates and bicarbonates in the membrane-making process by the chemical reaction. Desalination 267:42–48

    Article  CAS  Google Scholar 

  25. Cao JH, Zhu BK, Xu YY (2006) Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J Membr Sci 281:446–453

    Article  CAS  Google Scholar 

  26. Yang MC, Liu TY (2003) The permeation performance of polyacrylonitrile/polyvinylidinefluoride blend membranes. J Membr Sci 226:119–130

    Article  CAS  Google Scholar 

  27. Wu CG, Lu MI, Chuang HJ (2005) PVDF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte. Polymer 46:5929–5938

    Article  CAS  Google Scholar 

  28. Cheng CL, Wan CC, Wang YY (2004) Preparation of porous, chemically cross- linked, PVDF-based gel polymer electrolytes for rechargeable lithium batteries. J Power Sources 134:202–210

    Article  CAS  Google Scholar 

  29. Lee WK, Ha CS (1998) Miscibility and surface crystal morphology of blends containing poly(vinylidenefluoride) by atomic for cemicroscopy. Polymer 39:7131–7134

    Article  CAS  Google Scholar 

  30. Freire E, Bianchi O, Martins JN, Monteiro EEC, Forte MMC (2012) Non-isothermal crystallization of PVDF/PMMA blends processed in low and high shear mixers. J Non-Cryst Solids 358:2674–2681

    Article  CAS  Google Scholar 

  31. Cui WW, Tang DY, Gong ZL (2013) Electrospun poly(vinylidene fluoride)/poly (methylmethacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sources 223:206–213

    Article  CAS  Google Scholar 

  32. Yu BT, Qiu WH, Li FS, Xu GX (2006) The electrochemical characterization of lithium bis(oxalato) borate synthesized by a novel method. Electrochem Solid-State Lett 9:A1–A4

    Article  CAS  Google Scholar 

  33. Huang X, Hitt J (2013) Lithium ion battery separators: development and perfor-mance characterization of a composite membrane. J Membr Sci 425:163–168

    Article  Google Scholar 

  34. Ho WSW, Sirkar KK (2001) Membrane handbook. Chapman & Hall, New York 1992, Kluwer Academic, Boston, reprint edition

    Google Scholar 

  35. Saikia D, Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32

    Article  CAS  Google Scholar 

  36. Subramania A, KalyanaSundaram NT, SathiyaPriya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294:8–15

    Article  CAS  Google Scholar 

  37. Song JY, Cheng CL, Wang YY, Wan CC (2002) Microstructure of polyvinylidene fluoride based polymer electrolyte and its effect on transport properties. J Electrochem Soc 149:A1230–A1236

    Article  CAS  Google Scholar 

  38. Li H, Lin CE, Shi JL, Ma XT, Zhu BK, Zhu LP (2014) Preparation and characterization of safety PVDF/P(MMA-co-PEGMA) active separators by studying the liquid electrolyte distribution in this kind of membrane. Electrochim Acta 115:317–325

    Article  CAS  Google Scholar 

  39. Shubhaa N, Prasanth R, Hoon HH, Srinivasan M (2014) Plastic crystalline-semi crystalline polymer composite electrolyte based on non-woven poly(vinyli- denefluoride-co-hexafluoropropylene) porous membranes for lithium ion batteries. Electrochim Acta 125:362–370

    Article  Google Scholar 

  40. Jeon MY, Kim CK (2007) Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure. J Membr Sci 300:172–181

    Article  CAS  Google Scholar 

  41. Hao J, Lei G, Li ZH, Wu L, Xiao QZ, Wang L (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Membr Sci 428:11–16

    Article  CAS  Google Scholar 

  42. Digar M, Hung SL, Wen TC (2001) Blending poly(methyl methacrylate) and (styrene-co-acrylonitrile) as composite polymer electrolyte. J Appl Polym Sci 80:1319–1328

    Article  CAS  Google Scholar 

  43. Prasanth R, Shubha N, Hng HH, Srinivasan M (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J 49:307–318

    Article  CAS  Google Scholar 

  44. Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang X (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electro -spraying and electrospinning techniques. J Membr Sci 456:57–65

    Article  CAS  Google Scholar 

  45. Shubha N, Prasanth R, Hoon HH, Srinivasan M (2013) Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluorideco–hexafluoropropylen e)–layered clay nanocomposite fibrous membranes for lithium ion batteries. Mater Res Bull 48:526–537

    Article  CAS  Google Scholar 

  46. Jeong HS, Lee SY (2011) Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J Power Sources 196:6716–6722

    Article  CAS  Google Scholar 

  47. Lu Q, Fang J, Yang J, Miao R, Wang J, Nuli Y (2014) Novel cross-linked copolymer gel electrolyte supported by hydrophilic polytetrafluoroethylene for rechargeable lithium batteries. J Membr Sci 449:176–183

    Article  CAS  Google Scholar 

  48. Boudin F, Andrieu X, Jehoulet C, Olsen II (1999) Microporous PVdF gel for lithium- ion batteries. J Power Sources 804:81–82

    Google Scholar 

  49. Li W, Xing Y, Xing X, Li Y, Yang G, Xu L (2013) PVDF-based composite microporous gel polymer electrolytes containing a novelsingle ionic conductor SiO2 (Li+). Electrochim Acta 112:183–190

    Article  CAS  Google Scholar 

  50. Raghavan P, Manuel J, Zhao X, Kim D, Ahn J, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749

    Article  CAS  Google Scholar 

  51. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membr Sci 399:37–42

    Article  Google Scholar 

  52. Lian F, Wen Y, Ren Y, Guan HY (2014) A novel PVB based polymer membrane and its application in gel polymer electrolytes for lithium-ion batteries. J Membr Sci 456:42–48

    Article  CAS  Google Scholar 

  53. Kim YJ, Ahn CH, Lee MB, Choi MS (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127:137–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Beijing Municipal Natural Science Foundation (Project No. 2122009) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Wang.

Electronic supplementary material

ESM 1

(DOC 2.59 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, Z., Zhao, Z. et al. PVDF/PAN/SiO2 polymer electrolyte membrane prepared by combination of phase inversion and chemical reaction method for lithium ion batteries. J Solid State Electrochem 20, 699–712 (2016). https://doi.org/10.1007/s10008-015-3095-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3095-1

Keywords

Navigation