Journal of Solid State Electrochemistry

, Volume 20, Issue 3, pp 683–689 | Cite as

Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting

  • Mohamad Mohsen MomeniEmail author
  • Yousef Ghayeb
Original Paper


Chromium-sensitized titanium dioxide nanotubes (CTNT) with high photocatalytic activity were prepared by a chemical bath deposition technique. The resulting films were characterized by SEM, EDX, and XRD. Results showed that the fabricated films have the ordered nanotubes with diameter of 90–140 nm, wall thickness of 20–50 nm, and tube lengths in the range of 24 μm. Diffuse reflectance spectra showed an increase in the visible absorption relative to bare titanium dioxide nanotubes (TNT). The photoelectrochemical performance was examined under light irradiation in 1 M NaOH electrolyte. Photoelectrochemical characterization shows that chromium sensitizing efficiently enhances the photocatalytic water splitting performance of CTNT composite. The sample (C3TNT) exhibited better photocatalytic activity than the TNT and CTNT fabricated using other chromium concentrations. This inexpensive photoanodes prepared free of noble metals showed enhanced high photocurrent density with good stability and is a highly promising photoanode for solar hydrogen production.


Nanotubes Water splitting Anodizing Chemical bath deposition Photoelectrochemical 



The author would like to acknowledge the financial support of the Iranian Nanotechnology Society and Isfahan University of Technology (IUT) Research Council.


  1. 1.
    Zang Y, Li L, Xu Y, Zuo Y, Li G (2014) Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution. J Mater Chem A 2:15774–15780CrossRefGoogle Scholar
  2. 2.
    Reyes-Gil KR, Robinson DB (2013) WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment. ACS Appl Mater Interfaces 5:12400–12410CrossRefGoogle Scholar
  3. 3.
    Momeni MM, Ghayeb Y, Davarzadeh M (2015) Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J Electroanal Chem 739:149–155CrossRefGoogle Scholar
  4. 4.
    In S, Orlov A, Garcia F, Tikhov M, Wright DS, Lambert RM (2006) Efficient visible light-active N-doped TiO2 photocatalysts by a reproducible and controllable synthetic route. Chem Commun 40:4236–4238CrossRefGoogle Scholar
  5. 5.
    Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloy Compd 637:393–400CrossRefGoogle Scholar
  6. 6.
    Choudhury B, Choudhury A (2013) Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles. Mater Sci Eng B 178:794–800CrossRefGoogle Scholar
  7. 7.
    Long R, English NJ (2011) Tailoring the electronic structure of TiO2 by cation codoping from hybrid density functional theory calculations. Phys Rev B 83:155209CrossRefGoogle Scholar
  8. 8.
    Li S, Fu J (2013) Improvement in corrosion protection properties of TiO2 coatings by chromium doping. Corros Sci 68:101–110CrossRefGoogle Scholar
  9. 9.
    Momeni MM, Ghayeb Y, Davarzadeh M (2015) Electrochemical construction of different titania-tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts. J Mater Sci Mater Electron 26:1560–1567CrossRefGoogle Scholar
  10. 10.
    Sun S, Ding JJ, Bao J, Gao C, Qi ZM, Yang XY, He B, Li CX (2012) Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: a study on the structure, activity and deactivation mechanism. Appl Surf Sci 258:5031–5037CrossRefGoogle Scholar
  11. 11.
    Khaleel A, Shehadi I, Al-Shamisi M (2010) Structural and textural characterization of sol-gel prepared nanoscale titanium-chromium mixed oxides. J Non-Cryst Solids 356:1282–1287CrossRefGoogle Scholar
  12. 12.
    Ghasemi S, Rahimnejad S, Rahman Setayesh S, Rohani S, Gholami MR (2009) Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J Hazard Mater 172:1573–1578CrossRefGoogle Scholar
  13. 13.
    Lopez R, Gomez R, Oros-Ruiz S (2011) Photophysical and photocatalytic properties of TiO2-Cr sol-gel prepared semiconductors. Catal Today 166:159–165CrossRefGoogle Scholar
  14. 14.
    Cracia F, Holgado JP, Caballero A, Gonzalez-Elipe AR (2004) Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalysts. J Phys Chem B 108:17466–17476CrossRefGoogle Scholar
  15. 15.
    Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34:5337–5346CrossRefGoogle Scholar
  16. 16.
    Jun TH, Lee KS (2010) Cr-doped TiO2 thin films deposited by RF-sputtering. Mater Lett 64:2287–2289CrossRefGoogle Scholar
  17. 17.
    Pan L, Zou JJ, Zhang XW, Wang L (2010) Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2. Ind Eng Chem Res 49:8526–8531CrossRefGoogle Scholar
  18. 18.
    Dholam R, Patel N, Santini A, Miotello A (2010) Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydrogen Energy 35:9581–9590CrossRefGoogle Scholar
  19. 19.
    Fan XX, Chen XY, Zhu SP (2008) The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. J Mol Catal A Chemical 284:155–160CrossRefGoogle Scholar
  20. 20.
    Zhu JF, Deng ZG, Chen F (2006) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B Environ 62:329–335CrossRefGoogle Scholar
  21. 21.
    Mishra T, Wang L, Hahn R, Schmuki P (2014) In-situ Cr doped anodized TiO2 nanotubes with increased photocurrent response. Electrochim Acta 132:410–415CrossRefGoogle Scholar
  22. 22.
    Hosseini MG, Momeni MM, Faraji M (2011) Fabrication of Au-nanoparticle/TiO2 nanotubes electrodes using electrochemical methods and their application for electrocatalytic oxidation of hydroquinone. Electroanalysis 7:1654–1662CrossRefGoogle Scholar
  23. 23.
    Sarma B, Ray RS, Misra M (2015) Charge storage in flower-like ZnS electrochemically deposited on TiO2 nanotube. Mater Lett 139:77–80CrossRefGoogle Scholar
  24. 24.
    Zhong JS, Wang QY, Yu YF (2015) Solvothermal preparation of Ag nanoparticles sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance. J Alloy Compd 620:168–171CrossRefGoogle Scholar
  25. 25.
    Hosseini MG, Momeni MM (2012) Platinum nanoparticle-decorated TiO2 nanotube arrays as new highly active and non-poisoning catalyst for photoelectrochemical oxidation of galactose. Appl Catal A 427:35–42CrossRefGoogle Scholar
  26. 26.
    Zhang Q, Bao N, Zhu X, Ma D, Xin Y (2015) Preparation and photocatalytic properties of graphene/TiO2 nanotube arrays photoelectrodes. J Alloy Compd 618:761–767CrossRefGoogle Scholar
  27. 27.
    Wu L, Li F, Xu Y, Zhang JW, Zhang D, Li G, Li H (2015) Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl Catal B Environ 164:217–224CrossRefGoogle Scholar
  28. 28.
    Momeni MM, Ghayeb Y, Mohammadi F (2015) Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: effect of anodizing time on performance of Fe2O3 nanotube arrays. J Mater Sci Mater Electron 26:685–692CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations