Skip to main content
Log in

The role of deep acceptor levels in hydration and transport processes in BaZr1 − x Y x O3 – δ and related materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A statistical theory of hydration and defect formation in acceptor-doped proton-conducting perovskites has been developed taking into account contributions of the electron hole and vibrational subsystems. Using yttrium-doped BaZrO3 as an example, we show that deep acceptor states can significantly affect hydration, oxidation, and transport processes in proton-conducting oxides. The impact of these states on defect thermodynamics strongly depends on their energy and becomes negligible at a depth less than a certain value. We demonstrate that the experimental data on the hole conductivity of barium zirconates can be described both in the band transport model and in the model of small polaron hopping. These scenarios correspond to a somewhat different depth of the acceptor levels, but in both cases, the concentration of bound holes at the acceptor centers can be high enough and these states must be taken into account in the defect formation considerations. The results obtained agree well with experimental data on the hydrogen solubility and the contributions of different carriers (protons, oxygen ions, holes) to the charge transfer in barium zirconates with different doping levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kreuer KD (2003) Annu Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  2. Norby T, Wideroe M, Glockner R, Larring Y (2004) Dalton Trans 3012–3018

  3. Schober T (2003) Solid State Ionics 162–163:277–281

    Article  Google Scholar 

  4. De Souza ECC, Muccillo R (2010) Mater Res 13:385–394

    Article  Google Scholar 

  5. Fabbri E, Pergolesi D, Traversa E (2010) Chem Soc Rev 39:4355–4369

    Article  CAS  Google Scholar 

  6. Robertson J, Peacock PW (2003) Thin Solid Films 445:155–160

    Article  CAS  Google Scholar 

  7. Peacock PW, Robertson J (2003) Appl Phys Lett 83:2025–2027

    Article  CAS  Google Scholar 

  8. Kreuer KD, Adams S, Munch W, Fuchs A, Klock U, Maier J (2001) Solid State Ionics 145:295–306

    Article  CAS  Google Scholar 

  9. Schober T, Bohn HG (2000) Solid State Ionics 127:351–360

    Article  CAS  Google Scholar 

  10. Ricote S, Bonanos N, Caboche G (2009) Solid State Ionics 180:990–997

    Article  CAS  Google Scholar 

  11. Yamazaki Y, Babilo P, Haile SM (2008) Chem Mater 20:6352–6357

    Article  CAS  Google Scholar 

  12. Kjolseth C, Wang LY, Haugsrud R, Norby T (2010) Solid State Ionics 181:1740–1745

    Article  CAS  Google Scholar 

  13. Kobayashi K, Yamaguchi S, Iguchi Y (1998) Solid State Ionics 108:355–362

    Article  CAS  Google Scholar 

  14. He T, Kreuer KD, Baikov YM, Maier J (1997) Solid State Ionics 95:301–308

    Article  CAS  Google Scholar 

  15. Antonova EP, Yaroslavtsev IY, Bronin DI, Balakireva VB, Gorelov VP, Tsidilkovski VI (2010) Russ J Electrochem 46:741–748

    Article  CAS  Google Scholar 

  16. Bohn HS, Schober T (2000) J Am Ceram Soc 83:768–772

    Article  CAS  Google Scholar 

  17. Park HJ (2011) J Solid State Electrochem 15:2205–2211

    Article  CAS  Google Scholar 

  18. Nomura K, Kageyama H (2007) Solid State Ionics 178:661–665

    Article  CAS  Google Scholar 

  19. Islam MS, Slater PR, Tolchard JR, Dinges T (2004) Dalton Trans 3061–3066

  20. Sundell PG, Bjorketun ME, Wahnstrom G (2006) Phys Rev B 73:104112–104121

    Article  Google Scholar 

  21. Bjorketun ME, Sundell PG, Wahnstrom G (2007) Faraday Discuss 134:247–265

    Article  Google Scholar 

  22. Bjorheim TS, Kotomin E, Maier J (2015) J Mater Chem A 3:7639–7648

    Article  Google Scholar 

  23. Bjorheim TS, Arrigoni M, Gryaznov D, Kotomin E, Maier J (2015) Phys Chem Chem Phys 17:20765–20774

    Article  Google Scholar 

  24. Weston L, Janotti A, Cui XY, Stampfl C, Van de Walle CG (2014) Phys Rev B 89:184109–184116

    Article  Google Scholar 

  25. Bevillon E, Dezanneau G, Geneste G (2011) Phys Rev B 83:174101–174106

    Article  Google Scholar 

  26. Tsidilkovski VI, Leonidov IA, Lakhtin AA, Mezrin VA (1991) Phys Status Solidi B 168:233–244

    Article  Google Scholar 

  27. Tsidilkovski VI, Leonidov IA, Lakhtin AA, Mezrin VA (1991) Phys Status Solidi B 163:231–240

    Article  Google Scholar 

  28. Putilov LP, Tsidilkovski VI, Varaksin AN, Fishman AYA (2012) Defect Diffusion Forum 326:126–131

    Article  Google Scholar 

  29. Schirmer OF (2006) J Phys Condens Matter 18:R667–R704

    Article  CAS  Google Scholar 

  30. Schirmer OF (2011) J Phys Condens Matter 23:334218–334224

    Article  CAS  Google Scholar 

  31. Fishman AYA, Mitrofanov VYA, Tsidilkovski VI (2006) JETP Lett 83:133–137

    Article  Google Scholar 

  32. Ivanov MA, Fishman AYA, Tsidilkovski VI (2007) Low Temp Phys 33:362–370

    Article  CAS  Google Scholar 

  33. Tsidilkovski VI, Vykhodets VB, Kurennykh TE, Gorelov VP, Balakireva VB (2010) JETP Lett 92:774–778

    Article  CAS  Google Scholar 

  34. Xiong K, Robertson J (2004) Appl Phys Lett 85:2577–2579

    Article  CAS  Google Scholar 

  35. Cavalcante LS, Sczancoski JC, Espinosa JWM, Mastelaro VR, Michalowicz A, Pizani PS, De Vicente FS, Li MS, Varela JA, Longo E (2009) J Alloys Compd 471:253–258

    Article  CAS  Google Scholar 

  36. Yuan Y, Zhang X, Liu L, Jiang X, Lu J, Li Z, Zou Z (2008) Int J Hydr Energy 33:5941–5946

    Article  CAS  Google Scholar 

  37. Robertson J (2000) J Vac Sci Technol B 18:1785–1791

    Article  CAS  Google Scholar 

  38. Higuchi T (2006) In: Sakuma T, Takahashi H (eds) Physics of solid state ionics, 1st ed. Research Signpost

  39. Yamaguchi S, Kobayashi K, Higuchi T, Shin S, Iguchi Y (2000) Solid State Ionics 136–137:305–311

    Article  Google Scholar 

  40. Higuchi T, Yamaguchi S, Sata N, Shin S, Tsukamoto T (2003) Jap J Appl Phys 42:L1265–L1267

    Article  CAS  Google Scholar 

  41. Lany S, Zunger A (2009) Phys Rev B 80:085202–085206

    Article  Google Scholar 

  42. Lany S (2011) Phys Status Solidi B 5:1052–1060

    Article  Google Scholar 

  43. Varley JB, Janotti A, Franchini C, Van de Walle CG (2012) Phys Rev B 85:081109(R)–081112(R)

    Article  Google Scholar 

  44. Lyons JL, Janotti A, Van de Walle CG (2014) J Appl Phys 115:012014–012020

    Article  Google Scholar 

  45. Austin IG, Mott NF (1969) Adv Phys 18:41–102

    Article  CAS  Google Scholar 

  46. Young KF, Frederikse HPR (1973) J Phys Chem Ref Data 2:313–319

    Article  Google Scholar 

  47. Akbarzadeh AR, Kornev I, Malibert C, Bellaiche L, Kiat JM (2005) Phys Rev B 72:205104–205111

    Article  Google Scholar 

  48. Jacoboni C (2010) Theory of electron transport in semiconductors. Springer, Berlin

    Book  Google Scholar 

  49. Cammarata A, Ordejon P, Emanuele A, Duca D (2012) Chem Asian J 7:1827–1837

    Article  CAS  Google Scholar 

  50. Tsidilkovski VI, Gorelov VP, Balakireva VB (2003) Solid State Ionics 162–163:55–61

    Article  Google Scholar 

  51. Tsidilkovski VI (2003) Solid State Ionics 162–163:47–53

    Article  Google Scholar 

  52. Glerup M, Poulsen FW, Berg RW (2002) Solid State Ionics 148:83–92

    Article  CAS  Google Scholar 

  53. Omata T, Takagi M, Otsuka-Yao-Matsuo S (2004) Solid State Ionics 168:99–109

    Article  CAS  Google Scholar 

  54. Sahraoui DZ, Mineva T (2013) Solid State Ionics 253:195–200

    Article  Google Scholar 

  55. Perry CH, McCarthy DJ (1965) Phys Rev 138:A1537–A1538

    Article  Google Scholar 

  56. Gurvich LV, Veitz IV et al (1989) Thermodynamic properties of individual substances. Hemisphere, New York

    Google Scholar 

  57. Antonova EP (2015) PhD thesis, Institute of High Temperature Electrochemistry

  58. Yamazaki Y, Yang C-K, Haile SM (2011) Scr Mater 65:102–107

    Article  CAS  Google Scholar 

  59. Lindman A, Erhart P, Wahnstrom G (2015) Phys Rev B 91:245114–245128

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank V.G. Karpov for useful discussions. The work was partially supported by the Ministry of Education and Science of the Russian Federation (contract N 14.Z50.31.0001) and by the Research Program of Ural Branch of RAS (project 15-20-3-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Tsidilkovski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsidilkovski, V.I., Putilov, L.P. The role of deep acceptor levels in hydration and transport processes in BaZr1 − x Y x O3 – δ and related materials. J Solid State Electrochem 20, 629–643 (2016). https://doi.org/10.1007/s10008-015-3087-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3087-1

Keywords

Navigation