Journal of Solid State Electrochemistry

, Volume 20, Issue 4, pp 969–981 | Cite as

On the structural composition and stability of Fe–N–C catalysts prepared by an intermediate acid leaching

  • Ulrike I. Kramm
  • Alessandro Zana
  • Tom Vosch
  • Sebastian Fiechter
  • Matthias Arenz
  • Dieter Schmeißer
Original Paper

Abstract

The development of highly active and stable non-noble metal catalysts (NNMC) for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEM-FC) becomes of importance in order to enable cost reduction. In this work, we discuss the structural composition as derived from Fe-57 Mößbauer spectroscopy and X-ray diffraction, catalytic performance determined by a rotating (ring) disk electrode (RRDE) technique and stability evaluation of our Fe–N–C catalysts prepared by an intermediate acid leaching (IAL). The advantage of this IAL is given by a high density of active sites within the catalyst, as even without sulphur addition, an iron carbide formation and related disintegration of active sites are inhibited. In addition, our accelerated stress tests illustrate better stability of the sulphur-free IAL catalyst in comparison to the sulphur-added one.

Keywords

Non-noble metal catalysts (NNMC) Fe–N–C ORR PEM-FC Accelerated stress tests (ASTs) Mößbauer spectroscopy 

Supplementary material

10008_2015_3060_MOESM1_ESM.docx (631 kb)
ESM 1(DOCX 630 kb)

References

  1. 1.
    de Frank Bruijn A, Janssen GJM (2013) PEM fuel cell materials: costs, performance and durability. Encyclopedia of Sustainable Science and Technology. Springer NYGoogle Scholar
  2. 2.
    Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P (2008) Nature of the catalytic centres of porphyrin based electrocatalysts for the ORR—a correlation of kinetic current density with the site density of Fe-N4 centres. J Phys Chem C 112(39):15356–15366CrossRefGoogle Scholar
  3. 3.
    Tributsch H, Koslowski U, Dorbandt I (2008) Experimental and theoretical modeling of Fe-, Co-, Cu-, Mn-based electrocatalysts for oxygen reduction. Electrochim Acta 53(5):2198–2209CrossRefGoogle Scholar
  4. 4.
    Ferrandon M, Kropf AJ, Myers DJ, Artyushkova K, Kramm U, Bogdanoff P, Wu G, Johnston CM, Zelenay P (2012) Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst. J Phys Chem C 116:16001–16013CrossRefGoogle Scholar
  5. 5.
    Herranz J, Jaouen F, Lefevre M, Kramm UI, Proietti E, Dodelet J-P, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda T, Mukerjee S (2011) Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells. J Phys Chem C 115:16087–16097CrossRefGoogle Scholar
  6. 6.
    Kramm UI, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P (2011) Influence of the electron-density of FeN4-centers towards the catalytic activity of pyrolysed FeTMPPCl-based ORR-electrocatalysts. J Electrochem Soc 158(1):B69–B78CrossRefGoogle Scholar
  7. 7.
    Kramm UI, Herranz J, Larouche N, Arruda TM, Lefévre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet J-P (2012) Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys Chem Chem Phys 14:11673–11688CrossRefGoogle Scholar
  8. 8.
    Kramm UI, Herrmann-Geppert I, Bogdanoff P, Fiechter S (2011) Effect of an ammonia treatment on structure, composition and ORR activity of Fe-N-C catalysts. J Phys Chem C 115:23417–23427CrossRefGoogle Scholar
  9. 9.
    Kramm UI, Lefèvre M, Larouche N, Schmeisser D, Dodelet J-P (2014) Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J Am Chem Soc 136(3):978–985CrossRefGoogle Scholar
  10. 10.
    Goellner V, Baldizzone C, Schuppert A, Sougrati MT, Mayrhofer K, Jaouen F (2014) Degradation of Fe/N/C catalysts upon high polarization in acid medium. Phys Chem Chem Phys 16:18454–18462CrossRefGoogle Scholar
  11. 11.
    Morozan A, Sougrati MT, Goellner V, Jones D, Stievano L, Jaouen F (2014) Effect of furfuryl alcohol on metal organic framework-based Fe/N/C electrocatalysts for polymer electrolyte membrane fuel cells. Electrochim Acta 119:192–205CrossRefGoogle Scholar
  12. 12.
    Tian J, Morozan A, Sougrati MT, Lefèvre M, Chenitz R, Dodelet J-P, Jones D, Jaouen F (2013) Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: a matter of iron–ligand coordination strength. Angew Chem Int Ed 52(27):6867–6870CrossRefGoogle Scholar
  13. 13.
    Maruyama J, Abe I (2007) Fuel cell cathode catalyst with heme-like structure formed from nitrogen of glycine and iron. J Electrochem Soc 154(3):B297–B304CrossRefGoogle Scholar
  14. 14.
    Maruyama J, Okamura J, Miyazaki K, Uchimoto Y, Abe I (2008) Hemoglobin pyropolymer used as a precursor of a noble-metal-free fuel cell cathode catalyst. J Phys Chem C 112(7):2784–2790CrossRefGoogle Scholar
  15. 15.
    Maruyama J, Yamamoto M, Hasegawa T, Iwasaki S, Siroma Z, Mineshige A (2013) Carbonaceous thin film coated on nanoparticle as fuel cell catalyst formed by one-pot hybrid physical–chemical vapor deposition of iron phthalocyanine. Electrochim Acta 90:366–374CrossRefGoogle Scholar
  16. 16.
    Herranz J, Lefevre M, Dodelet J-P (2009) Metal-precursor adsorption effects on Fe-based catalysts for oxygen reduction in PEM fuel cells. J Electrochem Soc 156(5):B593–B601CrossRefGoogle Scholar
  17. 17.
    Jaouen F, Lefèvre M, Dodelet J-P, Cai M (2006) Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J Phys Chem B 110(11):5553–5558CrossRefGoogle Scholar
  18. 18.
    Szakacs CE, Lefevre M, Kramm UI, Dodelet J-P, Vidal F (2014) A density functional theory study of catalytic sites for oxygen reduction in Fe/N/C catalysts used in H2/O2 fuel cells. Phys Chem Chem Phys 16:13654–13661CrossRefGoogle Scholar
  19. 19.
    Herrmann I, Kramm UI, Fiechter S, Bogdanoff P (2009) Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim Acta 54:4275–4287CrossRefGoogle Scholar
  20. 20.
    Herrmann I, Kramm UI, Fiechter S, Brüser V, Kersten H, Bogdanoff P (2010) Comparative study of the carbonisation of CoTMPP by low temperature plasma and by heat treatment. Plasma Process Polym 7(6):515–526CrossRefGoogle Scholar
  21. 21.
    Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74CrossRefGoogle Scholar
  22. 22.
    Proietti E, Jaouen F, Lefévre M, Larouche N, Tian J, Herranz J, Dodelet J-P (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416CrossRefGoogle Scholar
  23. 23.
    Zhao D, Shui J-L, Grabstanowicz LR, Chen C, Commet SM, Xu T, Lu J, Liu D-J (2014) Highly efficient Non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. Adv Mater 26(7):1093–1097CrossRefGoogle Scholar
  24. 24.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447CrossRefGoogle Scholar
  25. 25.
    Jaouen F, Herranz J, Lefèvre M, Dodelet J-P, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson TS, Pylypenko S, Atanassov P, Ustinov EA (2009) A cross-laboratory experimental review of non-noble-metal catalysts for oxygen electro-reduction. Appl Mater Interfaces 1:1623–1639CrossRefGoogle Scholar
  26. 26.
    Bogdanoff P, Herrmann I, Hilgendorff M, Dorbandt I, Fiechter S, Tributsch H (2004) Probing structural effects of pyrolysed CoTMPP-based electrocatalysts for oxygen reduction via new preparation strategies. J New Mat Electrochem Systems 7:85–92Google Scholar
  27. 27.
    Shui J-L, Chen C, Grabstanowicz L, Zhao D, Liu D-J (2015) Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc Natl Acad Sci U S A 112(34):10629–10634CrossRefGoogle Scholar
  28. 28.
    Herrmann I, Kramm UI, Radnik J, Bogdanoff P, Fiechter S (2009) Influence of Sulphur on the pyrolysis of CoTMPP as electrocatalyst for the oxygen reduction reaction. J Electrochem Soc 156(10):B1283–B1292CrossRefGoogle Scholar
  29. 29.
    Kramm UI, Herrmann-Geppert I, Fiechter S, Zehl G, Zizak I, Dorbandt I, Schmeißer D, Bogdanoff P (2014) Effect of iron-carbide formation on the number of active sites in Fe-N-C catalysts for the oxygen reduction reaction in acidic media. J Mater Chem A 2(8):2663–2670CrossRefGoogle Scholar
  30. 30.
    Paddison SJ, Gasteiger HA (2013) PEM fuel cell materials, materials and design development challenges. Encyclopedia of Sustainable Science and Technology. Springer NYGoogle Scholar
  31. 31.
    Kramm UI, Herrmann I, Fiechter S, Zehl G, Zizak I, Abs-Wurmbach I, Radnik J, Dorbandt I, Bogdanoff P (2009) On the influence of sulphur on the pyrolysis process of FeTMPP-Cl-based electro-catalysts with respect to oxygen reduction reaction (ORR) in acidic media. ECS Trans 25(1):659–670CrossRefGoogle Scholar
  32. 32.
    Kramm UI, Lefèvre M, Bogdanoff P, Schmeißer D, Dodelet J-P (2014) Analyzing structural changes of Fe–N–C cathode catalysts in PEM fuel cell by Mößbauer spectroscopy of complete membrane electrode assemblies. J Phys Chem Lett 5:3750–3756CrossRefGoogle Scholar
  33. 33.
    Hartl K, Hanzlik M, Arenz M (2011) IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy Environ Sci 4(1):234–238CrossRefGoogle Scholar
  34. 34.
    Speder J, Zana A, Spanos I, Kirkensgaard JJK, Mortensen K, Hanzlik M, Arenz M (2014) Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts—the influence of the platinum to carbon ratio on the degradation rate. J Power Sources 261:14–22CrossRefGoogle Scholar
  35. 35.
    Zana A, Speder J, Reeler NEA, Vosch T, Arenz M (2013) Investigating the corrosion of high surface area carbons during start/stop fuel cell conditions: a Raman study. Electrochim Acta 114:455–461CrossRefGoogle Scholar
  36. 36.
    Zana A, Speder J, Roefzaad M, Altmann L, Bäumer M, Arenz M (2013) Probing degradation by IL-TEM: the influence of stress test conditions on the degradation mechanism. J Electrochem Soc 160(6):F608–F615CrossRefGoogle Scholar
  37. 37.
    Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8(6):A273–A276CrossRefGoogle Scholar
  38. 38.
    Patterson TW, Darling RM (2006) Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation. Electrochem Solid-State Lett 9(4):A183–A185CrossRefGoogle Scholar
  39. 39.
    Ferrandon M, Wang X, Kropf AJ, Myers DJ, Wu G, Johnston CM, Zelenay P (2013) Stability of iron species in heat-treated polyaniline–iron–carbon polymer electrolyte fuel cell cathode catalysts. Electrochim Acta 110:282–291CrossRefGoogle Scholar
  40. 40.
    Ohma A, Shinohara K, Iiyama A, Yoshida T, Daimaru A (2011) Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG. ECS Trans 41(1):775–784CrossRefGoogle Scholar
  41. 41.
    Gojkovic SL, Gupta S, Savinell RF (1998) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high area carbon as an electrocatalyst for oxygen reduction part I: characterization of the electrocatalyst. J Electrochem Soc 145(10):3493–3499CrossRefGoogle Scholar
  42. 42.
    Zagal JH, Páez M, Sturm J, Ureta-Zañartu S (1984) Electroreduction of oxygen on mixtures of phthalocyanines co-adsorbed on a graphite electrode. J Electroanal Chem 181:295–300CrossRefGoogle Scholar
  43. 43.
    Zagal JH, Páez M, Silva JF (2006) Fundamental aspects on the catalytic activity of metallomacrocyclics for the electrochemical reduction of O2. In: Zagal JH, Bedioui F, Dodelet J-P (eds) N4-macrocyclic metal complexes. Springer, New York, pp 41–82CrossRefGoogle Scholar
  44. 44.
    Zagal JH, Ponce I, Baez D, Venegas R, Pavez J, Paez M, Gulppi M (2012) A possible interpretation for the high catalytic activity of heat-treated non-precious metal Nx/C catalysts for O2 reduction in terms of their formal potentials. Electrochem Solid-State Lett 15(6):B90–B92CrossRefGoogle Scholar
  45. 45.
    Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRefGoogle Scholar
  46. 46.
    Gojkovic SL, Zecevic SK, Drazic DM (1994) Oxygen reduction on iron—part VI. Processes in alkaline solution. Electrochim Acta 39(7):975–982CrossRefGoogle Scholar
  47. 47.
    Kramm UI (2009) Die strukturelle Einbindung des Eisens in Eisenporphyrin-Elektrokatalysatoren - eine 57Fe mößbauerspektroskopische Studie. Dr. rer. nat., Technische Universität Berlin, BerlinGoogle Scholar
  48. 48.
    Bonakdarpour A, Lefèvre M, Yang R, Jaouen F, Dahn T, Dodelet J-P, Dahn JR (2008) Impact of loading in RRDE experiments on Fe-N-C catalysts: two- or four electron oxygen reduction? Electrochem Solid-State Lett 11(6):B105–B108CrossRefGoogle Scholar
  49. 49.
    Robson MH, Serov A, Atanassov P (2012) A mechanistic study of 4-aminonantipyrine and iron derived non-platinum group metal catalyst on the oxygen reduction reaction. Electrochim Acta 90:656–665CrossRefGoogle Scholar
  50. 50.
    Leonard ND, Barton SC (2014) Analysis of adsorption effects on a metal-nitrogen-carbon catalyst using rotating ring-disk study. J Electrochem Soc 161(13):H3100–H3105CrossRefGoogle Scholar
  51. 51.
    Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy, vol 1, 1st edn. Chapman and Hall Ltd., LondonCrossRefGoogle Scholar
  52. 52.
    Riedel E (1990) Anorganische chemie, vol 2. Walter de Gruyter, BerlinGoogle Scholar
  53. 53.
    Melendres CA (1980) Mössbauer and Raman spectra of carbon-supported iron-phthalocyanine. J Phys Chem 84(15):1936–1939CrossRefGoogle Scholar
  54. 54.
    Koslowski UI, Herrmann I, Bogdanoff P, Barkschat C, Fiechter S, Iwata N, Takahashi H, Nishikoro H (2008) Evaluation and analysis of PEM-FC performance using non-platinum cathode catalysts based on pyrolysed Fe- and Co-porphyrins—influence of a secondary heat-treatment. ECS Trans 13(17):125–141CrossRefGoogle Scholar
  55. 55.
    Roen LM, Paik CH, Jarvi TD (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid-State Lett 7(1):A19–A22CrossRefGoogle Scholar
  56. 56.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742CrossRefGoogle Scholar
  57. 57.
    Hiramitsu Y, Sato H, Hosomi H, Aoki Y, Harada T, Sakiyama Y, Nakagawa Y, Kobayashi K, Hori M (2010) Influence of humidification on deterioration of gas diffusivity in catalyst layer on polymer electrolyte fuel cell. J Power Sources 195:435–444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ulrike I. Kramm
    • 1
    • 4
  • Alessandro Zana
    • 2
  • Tom Vosch
    • 2
  • Sebastian Fiechter
    • 3
  • Matthias Arenz
    • 2
  • Dieter Schmeißer
    • 1
  1. 1.Department of PhysicsBTU Cottbus-SenftenbergCottbusGermany
  2. 2.Nano-Science Center, Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
  3. 3.Institute for Solar FuelsLise-Meitner-Campus of the Helmholtz-Center BerlinBerlinGermany
  4. 4.Graduate School of Excellence Energy Science and Engineering, Departments of Chemistry and Materials- and Earth-ScienceTU DarmstadtDarmstadtGermany

Personalised recommendations