Skip to main content
Log in

Synthesis, characterization, and electrochemical properties of Li2Mn1-x Fe x (PO3)4 cathode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li2Mn1-x Fe x (PO3)4 (x = 0, 0.2, 0.4, 0.6, 0.7) solid solution phase has been successfully prepared via solid-state reaction. The Rietveld refinement results indicate that the Li2Mn1-x Fe x (PO3)4 (x = 0, 0.2, 0.4, 0.6, 0.7) solid solutions with orthorhombic structure can be obtained and the lattice parameters (including a, b, c, and V) decrease with the increasing of Fe concentration. Partial substitution of manganese with iron enhances the electrochemical performance; there, the discharge-specific capacity of the samples obviously increases from 21 mAh/g for x = 0 to 59 mAh/g for x = 0.7, which is 85 % capacity of that one lithium removal. The cyclic voltammetric (CV) curves present the Mn2+/Mn3+ redox couple situated at 4.6 and 1.8 V and Fe2+/Fe3+ redox couple located at 4.3 and 2.3 V, which can be observed in cathodic and anodic sweeps. Such a low discharge potential value for M2+/M3+ redox couple may be attributed to the zigzag [(PO3)1−] n chains in this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for li-ion and li batteries. Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  2. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Eletrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  3. Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2013) LiMnPO4—a next generation cathode material for lithium-ion batteries. J Mater Chem A 1:3518–3539

    Article  CAS  Google Scholar 

  4. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phosphor-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432

    Article  Google Scholar 

  5. Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8V electrode material for lithium batteries. Eletrochem Solid-State Lett 3:178–179

    Article  CAS  Google Scholar 

  6. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  7. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613

    Article  CAS  Google Scholar 

  8. Zhang W, Shan Z, Zhu K, Liu S, Liu X, Tian J (2015) LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance li-ion batteries. Electrochim Acta 153:385–392

    Article  CAS  Google Scholar 

  9. Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135–A137

    Article  CAS  Google Scholar 

  10. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masqueliera C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M=Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921

    Article  CAS  Google Scholar 

  11. Lee SH, Park SS (2012) Structure, defect chemistry, and lithium transport pathway of lithium transition metal pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): atomistic simulation study. Chem Mater 24:3550–3557

    Article  CAS  Google Scholar 

  12. Tamaru M, Barpanda P, Yamada Y, Nishimura S, Yamada A (2012) Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode. J Mater Chem 22:24526–24529

    Article  CAS  Google Scholar 

  13. Murashova EV, Chudinova NN (2001) Synthesis and crystal structures of lithium polyphosphates, LiPO3, Li4H(PO3)5, and LiMn(PO3)3. Crystallography Reports 46:942–947

    Article  Google Scholar 

  14. Averbuch-Pouchot MT, Durif A (1972) Crystalographic data on two lithium-manganese(II) polyphosphates, LiMn(PO3)3 and Li2Mn(PO3)4. J Appl Crystallogr 5:307–308

    Article  CAS  Google Scholar 

  15. Moutataouia M, Lamire M, Saadi M, Ammari LE (2013) Dilithium manganese(II) catena-tetrakis(polyphosphate), Li2Mn(PO3)4. Acta Crystallogr Sect E: Struct Rep Online 70:i1–i1

    Article  Google Scholar 

  16. Zhou H, Upreti S, Chernova NA, Hautier G, Ceder G, Whittingham MS (2011) Iron and manganese pyrophosphates as cathodes for lithium-ion batteries. Chem Mater 23:293–300

    Article  CAS  Google Scholar 

  17. Larson AC, Von Dreele RB (2004) Los Alamos National Laboratory Report LAUR 86–748

  18. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  19. Werner PE (1976) On the determination of unit-cell dimensions from inaccurate powder diffraction data. J Appl Cryst 9(Pt.3):216–219

    Article  Google Scholar 

  20. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  CAS  Google Scholar 

  21. Furuta N, Nishimura S, Barpanda P, Yamada A (2012) Fe3+/Fe2+ redox couple approaching 4V in Li2–x(Fe1–yMny)P2O7 pyrophosphate cathodes. Chem Mater 24:1055–1061

    Article  CAS  Google Scholar 

  22. Muslim A, Ma T, Su Z, Nijat I (2014) Structural feature and electrochemical performance of h-LiMnBO3 and its carbon coated material prepared by microwave synthesis. Rare Metal Mater Eng 43:2095–2099

    Article  Google Scholar 

  23. Kosova NV, Tsapina AM, Slobodyuk AB, Petrov SA (2015) Structure and electrochemical properties of mixed transition-metal pyrophosphates Li2Fe1-yMnyP2O7 (0 ≤ y ≤ 1). Electrochim Acta 174:1278–1289

    Article  CAS  Google Scholar 

  24. Kobayashi G, Yamada A, Nishimura S, Kanno R, Kobayashi Y, Seki S, Ohno Y, Miyashiro H (2009) Shift of redox potential and kinetics in Lix(MnyFe1−y)PO4. J Power Sources 189:397–401

    Article  CAS  Google Scholar 

  25. Gutierrez A, Benedek NA, Manthiram A (2013) Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries. Chem Mater 25:4010–4016

    Article  CAS  Google Scholar 

  26. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10

    Article  CAS  Google Scholar 

  27. Liu JL, Jiang RR, Wang XY, Huang T, Yu AS (2009) The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values. J Power Sources 194:536–540

    Article  CAS  Google Scholar 

  28. Molenda J, Ojczyk W, Marzec J (2007) Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials. J Power Sources 174:689–694

    Article  CAS  Google Scholar 

  29. Shenouda AY, Liu Hua-K (2010) Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. 157: A1183–A1187

Download references

Acknowledgments

This work was funded by NSFC Grant supported through NSFC Committee of China (nos. 51172077 and 51372089) and the Foundation supported through the Fundamental Research Funds for the Central Universities (no. 2014ZB0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Zhao, Y., Dong, Y. et al. Synthesis, characterization, and electrochemical properties of Li2Mn1-x Fe x (PO3)4 cathode material for lithium-ion batteries. J Solid State Electrochem 20, 337–344 (2016). https://doi.org/10.1007/s10008-015-3048-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3048-8

Keywords

Navigation