Skip to main content
Log in

Correlation between the structural, electrical and electrochemical performance of layered Li(Ni0.33Co0.33Mn0.33)O2 for lithium ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Li(Ni0.33Co0.33Mn0.33)O2 (LNCMO) cathode material is prepared by poly(vinyl pyrrolidone) (PVP)-assisted sol-gel/hydrothermal and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Pluronic-P123)-assisted hydrothermal methods. The compound prepared by PVP-assisted hydrothermal method shows a comparatively higher electrical conductivity of ~2 × 10−5 S cm−1 and exhibits a discharge capacity of 152 mAh g−1 in the voltage range of 2.5 to 4.4 V, for a C-rate of 0.2 C, whereas the compounds prepared by P123-assisted hydrothermal method and PVP-assisted sol-gel method show a total electrical conductivity in the order of 10−6 S cm−1 and result in poor electrochemical performance. The structural and electrical properties of LNCMO (active material) and its electrochemical performance are correlated. The difference in percentage of ionic and electronic conductivity contribution to the total electrical conductivity is compared by transference number studies. The cation disorder is found to be the limiting factor for the lithium ion diffusion as determined from ionic conductivity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783–789

    Article  CAS  Google Scholar 

  2. Hewston TA, Chamberland BL (1987) J Phys Chem Solids 48:97–108

    Article  CAS  Google Scholar 

  3. Fey GTK, Yo WH, Chang WC (2002) J Power Sources 105:82–86

    Article  CAS  Google Scholar 

  4. Yabuuchi Y, Ohzuku T (2003) J Power Sources 171:119–121

    Google Scholar 

  5. Ohzuku T, Makimura Y (2001) Chem Lett 30(7):642–643

    Article  Google Scholar 

  6. Lu Z, MacNeil DD, Dahn JR (2001) Electrochem Solid State Lett 4:A191–A194

    Article  CAS  Google Scholar 

  7. Lu Z, MacNeil DD, Dahn JR (2001) Electrochem Solid State Lett 4:A200–A203

    Article  CAS  Google Scholar 

  8. Sun Y, Xia Y, Shiosaki Y, Noguchi H (2006) Electrochim Acta 51:5581–5586

    Article  CAS  Google Scholar 

  9. Gallus DR, Schmitz R, Wagner R, Hoffmann B, Nowak S, Laskovic IC, Schmitz RW, Winter M (2014) Electrochim Acta 134:393–398

    Article  CAS  Google Scholar 

  10. Li X, Wei YJ, Ehrenberg H, Du F, Wang CZ, Chen G (2008) Solid State Ionics 178:1969–1974

    Article  CAS  Google Scholar 

  11. Periyasamy P, Kalaiselvi N, Kim HS (2007) Int J Electrochem Sci 2:689–699

    Google Scholar 

  12. Whittingham M (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  13. Senthil Kumar P, Sakunthala A, Prabu M, Reddy MV, Joshi R (2014) Solid State Ionics 267:1–8

    Article  CAS  Google Scholar 

  14. Julien C, Camacho-Lopez MA, Mohan T, Chitra S, Kalyani P (2000) Solid State Ionics 135:241–248

    Article  CAS  Google Scholar 

  15. Suresh P, Rodrigues S, Shukla AK, Vasan HN, Munichandraiah N (2005) Solid State Ionics 176:281–290

    Article  CAS  Google Scholar 

  16. Zhecheva E, Stoyanova R (1993) Solid State Ionics 66:143–149

    Article  CAS  Google Scholar 

  17. Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) Nano Energy 2:1249–1260

    Article  CAS  Google Scholar 

  18. Zhu H, Xie T, Chen Z, Li L, Xu M, Wang W, Lai Y, Lia J (2014) Electrochim Acta 135:77–85

    Article  CAS  Google Scholar 

  19. Li D, Sasaki Y, Kobayakawa K, Sato Y (2006) Electrochim Acta 51:3809–3813

    Article  CAS  Google Scholar 

  20. Manikandan P, Periyasamy N (2014) Mater Res Bull 50:132–140

    Article  CAS  Google Scholar 

  21. Prabu M, Ketpang K, Shanmugam S (2014) Nano Scale 6:3173–3181

    CAS  Google Scholar 

  22. Rosaiah P, Hussain OM (2013) Adv Mat Lett 4:288–295

    Google Scholar 

  23. Savitha T, Selvasekarapandian S, Ramya CS (2008) J Solid State Electrochem 12:857–860

    Article  CAS  Google Scholar 

  24. Senthil Kumar P, Sakunthala A, Prabu M, Reddy MV (2014) Proceedings of the 14th Asian Conference on Solid State Ionics, pp: 11-20, ISBN: 978-981-09-1137-09

  25. Prakash D, Masuda Y, Sanjeeviraja C (2013) Powder Technol 235:454–459

    Article  CAS  Google Scholar 

  26. Pant M, Kanchan DK, Gondaliya N (2009) Mater Chem Phys 115:98–104

    Article  CAS  Google Scholar 

  27. Li Q, Thangadurai V (2010) J Mater Chem 20:7970–7983

    Article  CAS  Google Scholar 

  28. Selvasekarapandian S, Vijayakumar M (2002) Solid State Ionics 148:329–334

    Article  CAS  Google Scholar 

  29. Wang F, Xiao S, Chang Z, Yang Y, Wu Y (2013) Chem Commun 49:9209–9211

    Article  CAS  Google Scholar 

  30. Reddy MV, Subba Rao GV, Chowdari BVR (2006) J Power Sources 159:263–369

    Article  CAS  Google Scholar 

  31. Kim SK, Jeong WT, Lee HK, Shim J (2008) Int J Electrochem Sci 3:1504–1511

    CAS  Google Scholar 

  32. Kang CS, Son JT (2012) J Electroceram 29:235–239

    Article  CAS  Google Scholar 

  33. Cho TH, Shiosaki Y, Noguchi H (2006) J Power Sources 159:1322–1327

    Article  CAS  Google Scholar 

  34. Aurbach D, Levi M, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L (1998) J Electrochem Soc 145:3024–3034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Karunya University, Coimbatore- 641114, Tamil Nadu, India, for the central research facilities. The authors are very much grateful to the Department of Atomic Energy, Board of Research in Nuclear Sciences, Mumbai, India (DAE-BRNS Project no. 34/32/1221/2012) for providing funding for this research work. One of the authors Mr. P. Senthil Kumar gives thanks to DAE-BRNS (Project no. 34/32/1221/2012), for the grant of Senior Research Fellowship. Authors give thanks to Prof. B.V.R. Chowdari, NUS for the valuable suggestions and discussions. The authors are also thankful to the Department of Science and Technology (DST), SERB, India (Project no. SR/FTP/PS-192/2011) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sakunthala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.S., Sakunthala, A., Reddy, M.V. et al. Correlation between the structural, electrical and electrochemical performance of layered Li(Ni0.33Co0.33Mn0.33)O2 for lithium ion battery. J Solid State Electrochem 20, 1865–1876 (2016). https://doi.org/10.1007/s10008-015-3029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3029-y

Keywords

Navigation