Skip to main content
Log in

Local desorption of thiols by scanning electrochemical microscopy: patterning and tuning the reactivity of self-assembled monolayers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Self-assembled monolayers (SAMs) are widely used in the field of nanotechnologies and (bio)sensors. The monolayer surface properties are tailored by employing several techniques. A large set of SAM post-modification routes are commonly performed to adapt them to a variety of nano-technological and bio-technological studies as well as to several bio-sensoristic applications. Here, we report a procedure to locally modify SAMs by electrochemical desorption of alkanethiols in order to create microsized spots of bare gold area without affecting the surrounding monolayer stability. The tip of the scanning electrochemical microscope (SECM) was employed to draw microstructured pattern according to a defined geometry. The time stability of the pattern was also tested. Furthermore, the patterned surface was post-functionalized using the same alkanethiol or a ferrocene-terminated thiol, in order to tune the surface reactivity of the microstructure. The local surface properties, including reactivity and electron transfer kinetics toward redox mediator reduction, were characterized by SECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7

Similar content being viewed by others

References

  1. Vericat C, Vela ME, Corthey G, Pensa E, Cortés E, Fonticelli MH, Ibañez F, Benitez GE, Carro P, Salvarezza RC (2014) RSC Adv 4:27730–27754

  2. Gooding JJ, Ciampi S (2011) Chem Soc Rev 40:2704–2718

  3. Christopher LJ, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1169

    Article  Google Scholar 

  4. Koepsel JT, Murphy WL (2012) Chembiochem 13:1717–1724

  5. Krӓmer S, Fuierer RR, Gorman CB (2003) Chem Rev 103:4367–4418

  6. Choi IS, Chi YS (2006) Angew Chem Int Ed 45:4894–4897

  7. Smith RK, Lewis PA, Weiss PS (2004) Prog Surf Sci 75:1–68

  8. Arya SK, Solanki PR, Datta M, Bansi D, Malhotra BD (2009) Biosens Bioelectron 24:2810–2817

  9. Talbert JN, Goddard JM (2012) Colloid Surf B 93:8–19

  10. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Sensors 8:1400–1458

    Article  CAS  Google Scholar 

  11. Clausmeyer J, Schuhmann W, Plumeré N (2014) Trends Anal Chem 58:23–30

  12. Amemiya S, Bard AJ, Fan FRF, Mirkin MV, Unwin PR (2008) Annu Rev Anal Chem 1:95–131

  13. Bertoncello P (2010) Energy Environ Sci 3:1620–1633

  14. Bergner S, Vatsyayan P, Matysik FM (2013) Anal Chim Acta 775:1–13

  15. Rapino S, Treossi E, Palermo V, Marcaccio M, Paolucci F, Zerbetto F (2014) Chem Commun 50:13117–13120

  16. Wittstock G (2001) Fresenius J Anal Chem 370:303–315

  17. Lesch A, Vaske B, Meiners F, Momotenko D, Cortés-Salazar F, Girault HH, Wittstock G (2012) Angew Chem Int Ed 51:10413–10416

  18. Bard AJ, Mirkin MV (2012) Scanning electrochemical microscopy, Second edn. CRC Press, Taylor & Francis Group

  19. Kiani A, Alpuche-Aviles MA, Eggers PK, Jones M, Gooding JJ, Paddon-Row MN, Bard AJ (2008) Langmuir 24:2841–2849

  20. Wittstock G, Schuhmann W (1997) Anal Chem 69:5059–5066

  21. Schwamborn S, Stoica L, Neugebauer S, Reda T, Schmidt HL, Schuhmann W (2009) ChemPhysChem 10:1066–1070

  22. Treutler TH, Wittstock G (2003) Electrochim Acta 48:2923–2932

  23. Hazimeh H, Nunige S, Cornut R, Lefrou C, Combellas C, Kanoufi F (2011) Anal Chem 83:6106–6113

  24. Zhao C, Zawisza I, Nullmeier M, Burchardt M, Träuble M, Witte I, Wittstock G (2008) Langmuir 24:7605–7613

  25. Zhao C, Burchardt M, Brinkhoff T, Beardsley C, Simon M, Wittstock G (2010) Langmuir 26:8641–8647

  26. Valenti G, Bardini L, Bonazzi D, Rapino S, Marcaccio M, Paolucci F (2010) J Phys Chem C 114:22165–22170

  27. Wittstock G, Hesse R, Schuhmann W (1997) Electroanalysis 9:746–750

  28. Rapino S, Valenti G, Marcu R, Giorgio M, Marcaccio M, Paolucci F (2010) J Mater Chem 20:7272–7275

  29. Liu B, Bard AJ, Mirkin MV, Creager SE (2004) J Am Chem Soc 126:1485–1492

  30. Radford PT, French M, Creager SE (1999) Anal Chem 71:5101–5108

  31. Wilhelm T, Wittstock G (2000) Mikrochim Acta 133:1–9

  32. Widrig CA, Chung C, Porter MD (1991) J Electroanal Chem 310:335–359

  33. Yang DF, Al Maznai H, Morin M (1997) J Phys Chem B 101:1158–1166

  34. Cornut R, Lefrou C (2008) J Electroanal Chem 621:178–184

Download references

Acknowledgments

We thank the University of Bologna (FARB) and the Italian Ministero dell’Istruzione, Università e Ricerca (MIUR-project PRIN 2012 and the FIRB project “NANOSOLAR”) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefania Rapino or Francesco Paolucci.

Electronic supplementary material

ESM 1

(DOCX 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorani, A., Rapino, S., Fioravanti, G. et al. Local desorption of thiols by scanning electrochemical microscopy: patterning and tuning the reactivity of self-assembled monolayers. J Solid State Electrochem 20, 1037–1042 (2016). https://doi.org/10.1007/s10008-015-3020-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3020-7

Keywords

Navigation