Skip to main content
Log in

Electrochemical extraction and separation of praseodymium and erbium on reactive magnesium electrode in molten salts

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviors of Pr(III) and Er(III) in LiCl-KCl melts were studied on inert tungsten and reactive magnesium electrodes by cyclic voltammetry, square wave voltammetry, and open-circuit chronopotentiometry at 823 K. On a W electrode, the reduction of Pr(III) and Er(III) were found to be through a one-step process: Pr(III) + 3 e → Pr, Er(III) + 3e  → Er. On a Mg electrode, the reduction potentials of Pr(III)/Pr and Er(III)/Er were observed at more positive potential values than those on W electrode, due to the formation of Mg-Pr and Mg-Er intermetallic compounds when Pr(III) and Er(III) ions were reduced to Pr and Er metal and then react with the Mg substrate, respectively. The extraction of Pr(III) and Er(III) in LiCl-KCl melts were performed by galvanostatic electrolysis on Mg electrode, respectively. The Mg3Pr and Mg24Er5 intermetallic compounds were obtained, which characterized by X-ray diffraction (XRD) and scanning electron microscopy equipped with energy-dispersive spectrometry (SEM-EDS). In order to separate the Pr(III) and Er(III), potentiostatic electrolysis was performed at −1.9 V in LiCl-KCl-PrCl3-ErCl3 melts on a Mg electrode, only one Mg-Pr intermetallic compound, Mg12Pr, was found in the deposit. The separation efficiency was evaluated via inductively coupled plasma atomic emission spectrometer (ICP-AES) analysis at different electrolysis time during potentiostatic electrolysis at −1.9 V. The separation efficiency of Pr(III) was about 95.3 % from the mixture of PrCl3-ErCl3 in LiCl-KCl melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ackerman JP (1991) Chemical basis for pyrochemical reprocessing of nuclear fuel. Ind Eng Chem Res 30(1):141–145

    Article  CAS  Google Scholar 

  2. Inoue T, Koch L (2008) Development of pyroprocessing and its future direction. Nucl Eng Technol 40:183–190

    Article  CAS  Google Scholar 

  3. Willit JL, Miller WE, Battles JE (1992) Electrorefining of uranium and plutonium—a literature review. J Nucl Mater 195:229–249

    Article  CAS  Google Scholar 

  4. Tomczuk Z, Ackerman JP, Wolson RD, Miller WE (1992) Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel. J Electrochem Soc 139:3523–3528

    Article  CAS  Google Scholar 

  5. Kinoshita K, Inoue T, Fusselman S, Grimmett D, Roy J, Gay R, Krueger C, Nabelek C, Storvick T (1999) Separation of uranium and transuranic elements from rare earth elements by means of multistage extraction in LiCl-KCl/Bi system. J Nucl Sci Technol 36(2):189–197

    Article  CAS  Google Scholar 

  6. Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog Part Nucl Phys 66:144–166

    Article  CAS  Google Scholar 

  7. Nourry C, Massot L, Chamelot P, Taxil P (2009) Neodymium and gadolinium extraction from molten fluorides by reduction on a reactive electrode. J Appl Electrochem 39:2359–2367

    Article  CAS  Google Scholar 

  8. Castrillejo Y, Bermejo MR, Díaz Arocas P, Martínez AM, Barrado E (2005) Electrochemical behaviour of praseodymium(III) in molten chlorides. J Electroanal Chem 575:61–74

    Article  CAS  Google Scholar 

  9. Castrillejo Y, Bermejo MR, Barrado E, Martínez AM (2006) Electrochemical behaviour of erbium in the eutectic LiCl-KCl at W and Al electrodes. Electrochim Acta 51:1941–1951

    Article  CAS  Google Scholar 

  10. Nohira T, Kambara H, Amezawa K, Ito Y (2005) Electrochemical formation and phase control of Pr-Ni alloys in a molten LiCl-KCl-PrCl3 system. J Electrochem Soc 152:C183–C189

    Article  CAS  Google Scholar 

  11. Hirokazu K, Kenta M, Hideki O, Eiichi T, Toshiyuki N, Tetsuo O (2013) Electrochemical formation of Tb-Ni alloys in a molten LiCl-KCl-TbCl3 system. J Electrochem Soc 50(11):561–569

    Google Scholar 

  12. Yasuda K, Kobayashi S, Nohira T, Hagiwara R (2013) Electrochemical formation of Dy-Ni alloys in molten NaCl-KCl-DyCl3. Electrochimica Acta 106:293–300

    Article  CAS  Google Scholar 

  13. Yasuda K, Kobayashi S, Nohira T, Hagiwara R (2013) Electrochemical formation of Nd-Ni alloys in molten NaCl-KCl-NdCl3. Electrochimica Acta 92:349–355

    Article  CAS  Google Scholar 

  14. Masset P, Konings RJM, Malmbeck R, Serp J, Glatz JP (2005) Thermochemical properties of lanthanides (Ln = La, Nd) and actinides (An = U, Np, Pu, Am) in the molten LiCl-KCl eutectic. J Nucl Mater 344:173–179

    Article  CAS  Google Scholar 

  15. Lambertin D, Ched’homme S, Bourges G, Sanchez S, Picard GS (2005) Activity coefficients of plutonium and cerium in liquid gallium at 1073 K: Application to a molten salt/solvent metal separation concept. J Nucl Mater 341:131–140

    Article  CAS  Google Scholar 

  16. Smolenski V, Novoselova A, Osipenko A, Kormilitsyn M, Luk’yanova Y (2014) Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases. Electrochimica Acta 133:354–358

    Article  CAS  Google Scholar 

  17. Roy JJ, Grantham LF, Grimmett DL, Fusselman SP, Krueger CL, Storvick TS, Inoue T, Sakamura Y, Takahashi N (1996) Thermodynamic properties of U, Np, Pu, and Am in molten LiCl-KCl eutectic and liquid cadmium. J Electrochem Soc 143(8):2487–2492

    Article  CAS  Google Scholar 

  18. Castrillejo Y, Bermejo MR, Díaz Arocas P, Martínez AM, Barrado E (2005) The electrochemical behaviour of the Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl. J Electroanal Chem 579:343–358

    Article  CAS  Google Scholar 

  19. Li M, Gu Q, Han W, Yan YD, Zhang ML, Sun Y, Shi WQ (2015) Electrodeposition of Tb on Mo and Al electrodes: thermodynamic properties of TbCl3 and TbAl2 in the LiCl-KCl eutectic melts. Electrochim Acta 167:139–146

    Article  CAS  Google Scholar 

  20. Han W, Sheng QN, Zhang ML, Li M, Sun TT, Liu YC, Ye K, Yan YD, Wang YC (2014) The Electrochemical formation of Ni-Tb intermetallic compounds on a nickel electrode in the LiCl-KCl eutectic melts. Metall Mater Trans B 45:929–935

    Article  CAS  Google Scholar 

  21. Li M, Li W, Han W, Zhang ML, Yan YD (2014) The electrochemical behavior of Pr(III) in the LiCl-KCl melts on a Ni electrode. Chem J Chinese U 35(12):2662–2667

    CAS  Google Scholar 

  22. Li M, Sun TT, Han W, Wang SS, Zhang ML, Yan YD (2015) The electrochemical formation of Ho-Ni intermetallic compounds in the LiCl-KCl eutectic melts. Chinese J Inorg Chem 31(1):177–182

    CAS  Google Scholar 

  23. Li M, Sun TT, Sun Y, Han W, Zhang ML (2015) Electrochemical behavior of Dy(III) and selective formation of Dy-Ni intermetallic compounds in the LiCl-KCl eutectic melts. Acta Phys-Chim Sin 31(2):309–314

    CAS  Google Scholar 

  24. Yang YS, Zhang ML, Han W, Sun PY, Liu B, Jiang HL, Jiang T, Sun PY, Li M, Ye K, Yan YD (2014) Selective electrodeposition of dysprosium in LiCl-KCl-GdCl3-DyCl3 melts at magnesium electrodes: application to separation of nuclear wastes. Electrochim Acta 118:150–156

    Article  CAS  Google Scholar 

  25. Li X, Yan YD, Zhang ML, Tang H, Ji DB, Han W, Xue Y, Zhang ZJ (2014) Electrochemical reduction of Tm on Mg electrodes and co-reduction of Mg, Li and Tm on W electrodes. Electrochim Acta 135:327–335

    Article  CAS  Google Scholar 

  26. Luo AA (2004) Recent magnesium alloy development for elevated temperature application. Int Mater Rev 49:13–30

    Article  CAS  Google Scholar 

  27. Mordike B, Ebert T (2001) Magnesium: properties-applications-potential. Mater Sci Eng: A 302:37–45

    Article  Google Scholar 

  28. Konishi H, Nohira T, Ito Y (2003) Kinetics of DyNi2 film growth by electrochemical implantation. Electrochim Acta 48:563–568

    Article  CAS  Google Scholar 

  29. Iida T, Nohira T, Ito Y (2003) Electrochemical formation of Sm/Co alloys by codeposition of Sm and Co in a molten LiCl/KCl/SmCl3/CoCl2 system. Electrochim Acta 48:2517–2521

    Article  CAS  Google Scholar 

  30. Iida T, Nohira T, Ito Y (2005) RBS analysis of Sm-Ni alloy films prepared by molten salt electrochemical process. J Alloy Compd 386:207–210

    Article  CAS  Google Scholar 

  31. Chamelot P, Massot L, Hamel C, Nourry C, Taxil P (2007) Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent. J Nucl Mater 360:64–74

    Article  CAS  Google Scholar 

  32. Osteryoung J, O’Dea JJ, in: Bard AJ (Ed.) (1986) Electroanalytical Chemistry, vol. 14, Marcel Dekker, New York

  33. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamental and applications. Wiley, New York

    Google Scholar 

  34. Ramaley L, Krasue MS Jr (1969) Theory of square wave voltammetry. Anal Chem 41(11):1362–1365

    Article  CAS  Google Scholar 

  35. Osteryoung JG, Osteryoung RA (1985) Square wave voltammetry. Anal Chem 57(1):101A–110A

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, the National Natural Science foundation of China (21271054 and 21173060), the Major Research plan of the National Natural Science Foundation of China (91326113 and 91226201), and the Fundamental Research funds for the Central Universities (HEUCF20151007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, M., Han, W. et al. Electrochemical extraction and separation of praseodymium and erbium on reactive magnesium electrode in molten salts. J Solid State Electrochem 19, 3629–3638 (2015). https://doi.org/10.1007/s10008-015-2989-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2989-2

Keywords

Navigation