Electrochemical synthesis of polypyrrole nanowires on carbon nanotube-coated carbon fibers


Carbon fibers and carbon nanotube-coated carbon fibers have been used as supports for the electrochemical growth of polypyrrole nanowires using a template-free electrochemical method. The final nanocomposites are characterized by SEM, micro-Raman spectroscopy, and their conductivity is assessed. The role of the electrolyte salts and synthetic conditions (applied potential) on the morphology is investigated. It is demonstrated that this method can be successfully implemented to design original carbon-polypyrrole nanocomposites although their electrical conductivity is below the one of unsized carbon fibers but above the one of the pristine-sized ones.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2


  1. 1.

    He D, Zhang J, Saba J, Yuan J, Miomandre F, Bai J (2013) Carbon fiber and nano/micro hybrid structures and their interface in advanced composites. In: Pinson J, Chehimi M (eds) Applied Surface chemistry of nanomaterials. Nova, New York

    Google Scholar 

  2. 2.

    Khare R, Bose S (2005) Carbon nanotube based composites- a review. J Miner Mater Charact Eng 4:31–46

    Google Scholar 

  3. 3.

    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    CAS  Article  Google Scholar 

  4. 4.

    Kim P, Shi L, Majumdar A, MacEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    CAS  Article  Google Scholar 

  5. 5.

    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductiviy of individual carbon nanotubes. Nature 382:54–56

    CAS  Article  Google Scholar 

  6. 6.

    Skotheim TA, Reynolds JR (2007) Handbook of Conducting Polymers, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  7. 7.

    Ates M, Sarac AS (2009) Conducting polymer coated carbon surfaces and biosensors applications. Prog Org Coat 66:337–358

    CAS  Article  Google Scholar 

  8. 8.

    Mason EC, Weber AP (2011) Polypyrrole: properties, performance and applications. Nova, New York

    Google Scholar 

  9. 9.

    Cho SH, Song KT, Lee JY (2007) Recent advances in Polypyrrole. In: Reynolds JR, Skotheim TA (eds) Handbook of conducting polymers, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  10. 10.

    Sahoo NG, Jung YC, So HH, Cho JW (2007) Polypyrrole coated carbon nanotubes: Synthesis, characterization, and enhanced electrical properties. Synth Met 157(8-9):374–379

    CAS  Article  Google Scholar 

  11. 11.

    Wu TM, Lin SH (2006) Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. J Polym Sci Polym Chem Ed 44(21):6449–6457

    CAS  Article  Google Scholar 

  12. 12.

    Guo HF, Zhu H, Lin HY, Zhang JQ (2008) Polypyrrole-multi-walled carbon nanotube nanocomposites synthesized in oil-water microemulsion. Colloid Polym Sci 286(5):587–591

    CAS  Article  Google Scholar 

  13. 13.

    Zhang B, Xu YT, Zheng YF, Dai LZ, Zhang MQ, Yang J, Chen YJ, Chen XD, Zhou JY (2011) A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett 6:431

    Article  Google Scholar 

  14. 14.

    Miomandre F, Audebert P (2013) Basics and new insight in the electrochemistry of conducting polymers. In: Almeida LCP (ed) Conducting polymers : synthesis, properties and applications. Nova, New York, pp 53–90

    Google Scholar 

  15. 15.

    Lin XQ, Xu YH (2008) Facile synthesis and electrochemical capacitance of composites of polypyrrole/multi-walled carbon nanotubes. Electrochim Acta 53(15):4990–4997

    CAS  Article  Google Scholar 

  16. 16.

    Bozlar M, Miomandre F, Bai JB (2009) Electrochemical synthesis and characterization of carbon nanotube/modified polypyrrole hybrids using a cavity microelectrode. Carbon 47(1):80–84

    CAS  Article  Google Scholar 

  17. 17.

    Bhatia R, Sangeeth CSS, Prasad V, Menon R (2011) Preparation and characterization of multiwall carbon nanotube/polypyrrole coaxial fibrils. Phys B Condens Matter 406(9):1727–1732

    CAS  Article  Google Scholar 

  18. 18.

    Chiu HT, Lin JS (1992) Electrochemical deposition of PPy on carbon fibers for improved adhesion to the epoxy resin matrix. J Mater Sci 27:319–327

    CAS  Article  Google Scholar 

  19. 19.

    Saba J, Magga Y, He D, Miomandre F, Bai J (2013) Continuous electrodeposition of polypyrrole on carbon nanotube-carbon fiber hybrids as a protective treatment against nanotube dispersion. Carbon 51:20–26

    CAS  Article  Google Scholar 

  20. 20.

    Tellakula RA, Varadan VK, Shami TC, Mathur GN (2004) Carbon fiber and nanotube based composites with polypyrrole fabric as electromagnetic absorbers. Smart Mater Struct 13(5):1040–1044

    CAS  Article  Google Scholar 

  21. 21.

    Jang J, Oh JH (2004) A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes. Chem Commun 7:882–883

    Article  Google Scholar 

  22. 22.

    Jang J, Yoon H (2005) Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems. Langmuir 21(24):11484–11489

    CAS  Article  Google Scholar 

  23. 23.

    Yang XM, Zhu ZX, Dai TY, Lu Y (2005) Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol Rapid Commun 26(21):1736–1740

    CAS  Article  Google Scholar 

  24. 24.

    Johnson BJS, Wolf JH, Zalusky AS, Hillmyer MA (2004) Template syntheses of polypyrrole nanowires and CdS nanoparticles in porous polymer monoliths. Chem Mater 16(15):2909–2917

    CAS  Article  Google Scholar 

  25. 25.

    Long Y-Z, Li M-M, Gu C, Wan M, Duvail J-L, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36(10):1415–1442

    CAS  Article  Google Scholar 

  26. 26.

    Yin Z, Zheng Q (2012) Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv Energy Mater 2:179–218

    CAS  Article  Google Scholar 

  27. 27.

    Jerome C, Jerome R (1998) Electrochemical synthesis of polypyrrole nanowires. Angew Chem Int Ed 37(18):2488–2490

    CAS  Article  Google Scholar 

  28. 28.

    Ge DT, Wang JX, Wang SC (2003) Synthesis of polypyrrole nanowires (nanotubules). Prog Chem 15(6):456–461

    CAS  Google Scholar 

  29. 29.

    Bocharova V, Kiriy A, Vinzelberg H, Monch I, Stamm M (2005) Polypyrrole nanowires grown from single adsorbed polyelectrolyte molecules. Angew Chem Int Ed 44(39):6391–6394

    CAS  Article  Google Scholar 

  30. 30.

    Debiemme-Chouvy C, Tran TTM (2008) An insight into the overoxidation of polypyrrole materials. Electrochem Commun 10(6):947–950

    CAS  Article  Google Scholar 

  31. 31.

    Debiemme-Chouvy C (2009) Template-free one-step electrochemical formation of polypyrrole nanowire array. Electrochem Commun 11(2):298–301

    CAS  Article  Google Scholar 

  32. 32.

    Fakhry A, Pillier F, Debiemme-Chouvy C (2014) Templateless electrogeneration of polypyrrole nanostructures: impact of the anionic composition and pH of the monomer solution. J Mater Chem A 2:9859

    CAS  Article  Google Scholar 

  33. 33.

    Zhao ZG, Ci LJ, Cheng HM, Bai JB (2005) The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon 43(3):663–665

    CAS  Article  Google Scholar 

  34. 34.

    Yang X, Dai T, Zhu Z, Lu Y (2007) Electrochemical synthesis of functional polypyrrole nanotubes via a self-assembly process. Polymer 48:4021–4027

    CAS  Article  Google Scholar 

  35. 35.

    Maity A, Ray SS (2008) Highly conductive core-shell nanocomposite of Poly(N-vinylcarbazole)-Polypyrrole with multiwalled carbon nanotubes. Macromol Rapid Commun 29(19):1582–1587

    CAS  Article  Google Scholar 

  36. 36.

    Huang K, Wan M, Long Y-Z, Chen Z, Wei Y (2005) Multi-functional polypyrrole nanofibers via a functional dopand-introduced process. Synth Met 155:495–500

    CAS  Article  Google Scholar 

  37. 37.

    Ciric-Marjanovic G, Mentus S, Pasti I, Gavrilov N, Krstic J, Travas-Sejdic J, Strover LT, Kopecka J, Moravkova Z, Trchova M, Stejskal J (2014) Synthesis, characterization, and electrochemistry of nanotubular polypyrrole and polypyrrole-derived carbon nanotubes. J Phys Chem C 118(27):14770–14784

    CAS  Article  Google Scholar 

  38. 38.

    Bora C, Sharma J, Dolui S (2014) Polypyrrole/sulfonated graphene composite as electrode material for supercapacitor. J Phys Chem C 118(51):29688–29694

    CAS  Article  Google Scholar 

  39. 39.

    Santos MJL, Brolo AG, Girotto EM (2007) Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochim Acta 52(20):6141–6145

    CAS  Article  Google Scholar 

  40. 40.

    Zang J, Li CM, Bao SJ, Cui X, Bao Q, Sun CQ (2008) Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromolecules 41:7053–7057

    CAS  Article  Google Scholar 

Download references


Joseph Lautru (Institut d’Alembert, ENS Cachan) and Françoise Garnier (Ecole Centrale Paris) are both acknowledged for SEM experiments. Pascale Gemeiner (Ecole Centrale Paris) is acknowledged for MicroRaman experiments.

Author information



Corresponding author

Correspondence to Fabien Miomandre.

Supplementary information

Scheme of the CVD reactor for the synthesis of CNT on CF surface (Fig. S1), picture of the conductivity measurement set-up used in this paper (Fig. S2) and EDX spectrum for PPy nanowires synthesized on CF (Fig. S3) can be found in S.I.


(DOCX 1263 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miomandre, F., Saba, J., Wojcik, K. et al. Electrochemical synthesis of polypyrrole nanowires on carbon nanotube-coated carbon fibers. J Solid State Electrochem 19, 2691–2699 (2015). https://doi.org/10.1007/s10008-015-2988-3

Download citation


  • Carbon Fiber
  • Final Nanocomposites
  • Electrolyte Salt
  • Fiber Mesh
  • Phosphoric Anhydride