Skip to main content
Log in

Electrode modification using nanocomposites of electropolymerised cobalt phthalocyanines supported on multiwalled carbon nanotubes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A polymer of tetra(4)-(4,6-diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) has been deposited over a multiwalled carbon nanotube (MWCNT) platform and its electrocatalytic properties investigated side by side with polymerized cobalt tetraamino phthalocyanine (CoTAPc). X-ray photoelectron spectroscopy, scanning electron microscopy and cyclic voltammetry studies were used for characterization of the prepared polymers of cobalt phthalocyanine derivatives and their nanocomposites. l-Cysteine was used as a test analyte for the electrocatalytic activity of the nanocomposites of polymerized cobalt phthalocyanines and multiwalled carbon nanotubes. The electrocatalytic activity of both polymerized cobalt phthalocyanines was found to be superior when polymerization was done on top of MWCNTs compared to bare glassy carbon electrode. A higher sensitivity for l-cysteine detection was obtained on CoTAPc compared to CoPyPc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lalande G, Cote R, Tamizhmani G, Guay D, Dodelet JP, Dignard-Bailey L, Weng LT, Bertran P (1995) Electrochim Acta 40:2635–2646

    Article  CAS  Google Scholar 

  2. Nyokong T (2006) Electrodes modified with monomeric M-N4 catalysts for the detection of environmentally important molecules. In: Zagal JH, Bedioui F, Dodelet J-P (eds) N4-macrocyclic metal complexes. Springer, New York, p. 315

    Chapter  Google Scholar 

  3. Xu F, Li H, Cross SJ, Guarr TF (1994) J Electroanal Chem 368:221–225

    Article  CAS  Google Scholar 

  4. Qi X, Baldwin RP RP (1996) J Electrochem Soc 143:1283–1287

    Article  CAS  Google Scholar 

  5. Fan J-P, Zhang X-M, Ying M (2010) S Afr J Chem 63:145–151

    Google Scholar 

  6. Brown KL, Shaw J, Ambrose M, Mattola HA (2002) Microchem J 72:285–298

    Article  CAS  Google Scholar 

  7. Griveau S, Albin V, Pauporté T, Zagal JH, Bedioui F (2002) J Mater Chem 12:225–232

    Article  CAS  Google Scholar 

  8. Qi X, Baldwin RP, Li H, Guarr TF (1991) Electroanalysis 3:119–124

    Article  CAS  Google Scholar 

  9. Coates M, Nyokong T (2012) J Electroanal Chem 687:111–116

    Article  CAS  Google Scholar 

  10. Nyoni S, Nyokong T (2014) Electroanalysis 26:2261–2272

    Article  CAS  Google Scholar 

  11. Nyoni S, Mugadza T, Nyokong T (2014) Electrochim Acta 128:32–40

    Article  CAS  Google Scholar 

  12. Kruusenberg I, Matisen L, Tammeveski K (2013) Int J Electrochem Sci 8:1057–1066

    CAS  Google Scholar 

  13. Songa H, Qiua X, Li F (2008) Electrochim Acta 53:3708–3713

    Article  Google Scholar 

  14. Guo D-J, Jing Z-H (2010) J Power Sources 195:3802–3805

    Article  CAS  Google Scholar 

  15. Jiang Z, Yu X, Jiang Z-J, Menga Y, Shi Y (2009) J Mater Chem 19:6720–6726

    Article  CAS  Google Scholar 

  16. Griveau S, Pavez J, Zagal JH, Bedioui F (2001) J Electroanal Chem 497:75–83

    Article  CAS  Google Scholar 

  17. El-Khairy L, Ueland PM, Refsum H, Graham IM, Vollse SE (2001) Circulation 103:2544–2449

    Article  CAS  Google Scholar 

  18. Somashekarappa MP, Keshavanyya J, Sampath S (2002) Pure Appl Chem 74:1609–1620

    Article  CAS  Google Scholar 

  19. Tse Y, Janda P, Lam H, Zhang JJ, Pietro WJ, Lever ABP (1997) J Porphyrins Phthalocyanines 1:3–16

    Article  CAS  Google Scholar 

  20. Sivanesan A, John S (2008) Langmuir 24:2186–2196

    Article  CAS  Google Scholar 

  21. Sivanesan A, John S (2009) Electrochim Acta 54:7458–7463

    Article  CAS  Google Scholar 

  22. Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre MJ (2002) Electroanalysis 14:540–545

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  24. Gooding J, Praig V, Hall E (1998) Anal Chem 70:2396–2402

    Article  CAS  Google Scholar 

  25. Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Coord Chem Rev 254:1769–1802

    Article  CAS  Google Scholar 

  26. Fotouhi L, Fatollahzadeh M, Heravi MM (2012) Int J Electrochem Scie 7:3919–3928

    CAS  Google Scholar 

  27. Li Z, Lieberman M, Hill W (2001) Langmuir 17:4887–4894

    Article  CAS  Google Scholar 

  28. Zagal JH, Gulppi MA, Depretz C, Lelievre D (1999) J Porphyrins Phthalocyanines 3:355–363

    Article  CAS  Google Scholar 

  29. Huang J, Hemminger JC (1993) J Am Chem Soc 115:3342–3343

    Article  CAS  Google Scholar 

  30. NIST Standard Reference Database 20, Version 3.4 (web version) (http://srdata.nist.gov/xps/) (2003)

  31. Smart RSC, Skinner WM, Gerson AR (1999) Surf Interface Anal 28:101–105

    Article  CAS  Google Scholar 

  32. Gengenbach TR, Chatelier RC, Griesser HJ (1996) Surf Interface Anal 24:611–619

    Article  CAS  Google Scholar 

  33. Maree S, Nyokong T (2000) J Electroanal Chem 492:120–127

    Article  CAS  Google Scholar 

  34. Devasenathipathy R, Mani V, Chen AM, Kohilarani K, Ramaraj S (2015) Int J Electrochem Sci 10:682–690

    CAS  Google Scholar 

  35. Khaloo SS, Amini MK, Tangestaninejad S, Shahrokhian S, Kia R (2004) J Iran Chem Soc 1:128–135

    Article  CAS  Google Scholar 

  36. Ozoemena KI, Nyokong T, Westbroek P (2003) Electroanalysis 14:1762–1770

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa, through DST/NRF Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (IUD 62620) as well as Rhodes University and DST/Mintek Nanotechnology Innovation Centre (NIC)—Sensors, South Africa. SN thanks African laser centre for a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyoni, S., Mashazi, P. & Nyokong, T. Electrode modification using nanocomposites of electropolymerised cobalt phthalocyanines supported on multiwalled carbon nanotubes. J Solid State Electrochem 20, 1075–1086 (2016). https://doi.org/10.1007/s10008-015-2985-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2985-6

Keywords

Navigation