Journal of Solid State Electrochemistry

, Volume 20, Issue 4, pp 875–893 | Cite as

Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives

  • Ronald Vargas
  • Carlos Borrás
  • Daniel Méndez
  • Jorge Mostany
  • Benjamín R. Scharifker
Review

Abstract

This work summarizes progresses achieved in electrochemical oxygen transfer reactions from water to organic pollutant molecules on metal oxide electrodes during the past two decades. Fundamental understanding of the dynamics of the electrochemical oxygen transfer reaction is of crucial importance for the development of key concepts of electrocatalytic processes, leading to the implementation of environmental electrochemistry wastewater treatment schemes with rational design of the suitable electrocatalytic systems. We discuss the current knowledge on the electrochemical oxygen transfer reaction, emphasizing the importance of surface processes in order to generalize mechanistically the experimental results obtained on different electrode materials, describing also the practical kinetic models developed and their implications. From the information gathered in this review, it is apparent that explanations for the kinetics of the reactions in relation to the structure of the organic compounds involved is lacking, hence that new information about structure-reactivity relationships is needed. We show in particular that the open circuit decay of the concentration of radical cations, obtained from spectroelectrochemical data, allows correlating the structure of adsorbed states with reactivity during oxygen transfer reactions, pointing as well to research efforts required to understand the catalytic performance of metal oxide electrodes in decomposing organic compounds strongly adsorbed on their surfaces. Finally, some perspectives for future research in this area are briefly commented.

Keywords

Electrocatalysis Oxygen transfer Metal oxide electrode Surface reaction Kinetic modeling Linear free energy relationships 

References

  1. 1.
    Kapałka A, Fóti G, Comninellis C (2010) In: Ch Comninellis, Chen G (eds) Electrochemistry for the Environment. Springer Science + Business Media, New YorkGoogle Scholar
  2. 2.
    Panizza M (2010) In: Ch Comninellis, Chen G (eds) Electrochemistry for the Environment. Springer Science + Business Media, New YorkGoogle Scholar
  3. 3.
    Panizza M, Cerisola G (2009) Chem Rev 109:6541–6569CrossRefGoogle Scholar
  4. 4.
    Chaplin BP (2014) Environ Sci: Processes Impacts 16:1182–1203Google Scholar
  5. 5.
    Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Environ Sci Pollut Res 21(14):8336–8367CrossRefGoogle Scholar
  6. 6.
    Vargas R, Borrás C, Mostany J, Scharifker BR (2011) Bol Acad C Fis Mat Nat 71:37–56Google Scholar
  7. 7.
    Kapałka A, Fóti G, Comninellis C (2008) J Appl Electrochem 38:7–16CrossRefGoogle Scholar
  8. 8.
    Borrás C, Mostany J, Scharifker BR (2005) In: Palomar-Pardavé ME (ed) Applications of Analytical Chemistry in Enviromental Research. India, Research SignpostGoogle Scholar
  9. 9.
    Comninellis C (1994) Electrochim Acta 39:1857–1862CrossRefGoogle Scholar
  10. 10.
    Martínez-Huitle CA, Andrade LS (2011) Quim Nov. 34(5):850–858CrossRefGoogle Scholar
  11. 11.
    Kaba L, Hitchens GD, JO’M Bockris (1990) J Electrochem Soc 137:1341–1345CrossRefGoogle Scholar
  12. 12.
    Oturan MA, Aaron J-J (2014) Crit Rev Environ Sci Technol 44(23):2577–2647CrossRefGoogle Scholar
  13. 13.
    Hamza M, Ammar S, Abdelhédi R (2011) Electrochim Acta 56:3785–3789CrossRefGoogle Scholar
  14. 14.
    Recio FJ, Herrasti P, Sirés I, Kulak AN, Bavykin DV, Ponce de León C, Walsh FC (2011) Electrochim Acta 56:5158–5165CrossRefGoogle Scholar
  15. 15.
    Johnson DC, Feng J, Houk LL (2000) Electrochim Acta 42:323–330CrossRefGoogle Scholar
  16. 16.
    Hu F, Dong Z, Cui X, Chen W (2011) Electrochim Acta 56:1576–1580CrossRefGoogle Scholar
  17. 17.
    Donaghue A, Chaplin BP (2013) Environ Sci Technol 47(21):12391–12399CrossRefGoogle Scholar
  18. 18.
    Tang X-D, Hu T, Li J-J, Wang F, Qing D-Y (2015) Energy Fuel 29:2097–2103CrossRefGoogle Scholar
  19. 19.
    Thiam A, Sirés I, Garrido JÁ, Rodríguez R, Brillas E (2015) J Hazard Mater 290:34–42CrossRefGoogle Scholar
  20. 20.
    Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2015) Water Res 75:95–108CrossRefGoogle Scholar
  21. 21.
    Lianos P (2011) J Hazard Mater 185(2-3):575–590CrossRefGoogle Scholar
  22. 22.
    Liu Y, Li J, Zhou B, Chen H, Chen Q, Wang Z, Li L, Wang J, Cai W (2011) Chem Commun 47:10314–10316CrossRefGoogle Scholar
  23. 23.
    Liu Y, Li J, Zhou B, Chen H, Chen Q, Wang Z, Li L, Wang J, Cai W (2011) Water Res 45:3991–3998CrossRefGoogle Scholar
  24. 24.
    Liu Y, Li J, Zhou B, Lv S, Li X, Chen H, Chen Q, Cai W (2012) Appl Catal B Environ 111-112:485–491CrossRefGoogle Scholar
  25. 25.
    Chen Q, Bai J, Li J, Huang K, Li X, Zhou B, Cai W (2014) Chem Eng J 252:89–94CrossRefGoogle Scholar
  26. 26.
    Li K, Zhang H, Tang T, Xu Y, Ying D, Wang Y, Jia J (2014) Water Res 62:1–10CrossRefGoogle Scholar
  27. 27.
    Beck F, Kaiser W, Krohn H (2000) Electrochim Acta 45:4691–4695CrossRefGoogle Scholar
  28. 28.
    Iniesta J, Michaud PA, Panizza M, Comninellis C (2001) Electr Commun 3:346–351CrossRefGoogle Scholar
  29. 29.
    Abaci S, Tamer U, Pekmez K, Yildiz A (2005) Electrochim Acta 50:3655–3659CrossRefGoogle Scholar
  30. 30.
    Ameri M, Asghari A, Amoozadeh A, Bakherad M, Nematollahi D (2014) Chin Chem Lett 25(12):1607–1610CrossRefGoogle Scholar
  31. 31.
    Finney EE, Ogawa KA, Boydston AJ (2012) J Am Chem Soc 134(30):12374–12377CrossRefGoogle Scholar
  32. 32.
    Makarem S, Reza Fakhari A, Asghar Mohammadi A (2012) Ind Eng Chem Res 51:2200–2204CrossRefGoogle Scholar
  33. 33.
    Nematollahi D, Zohdijamil Z, Salehzadeh H (2014) J Electroanal Chem 720-721:156–161CrossRefGoogle Scholar
  34. 34.
    Asghari A, Ameri M, Radmannia S, Rajabi M, Bakherad M, Nematollahi D J Electroanal Chem 733:47-52Google Scholar
  35. 35.
    Johnson SK, Houk LL, Feng J, Houk RS, Jonhson DC (1999) Environ Sci Technol 33:2638–2644CrossRefGoogle Scholar
  36. 36.
    Popovic ND, Johnson DC (1998) Anal Chem 70:468–472CrossRefGoogle Scholar
  37. 37.
    Borrás C, Laredo T, Scharifker BR (2003) Electrochim Acta 48:2775–2780CrossRefGoogle Scholar
  38. 38.
    Treimer SE, Feng J, Scholten MD, Johnson DC (2001) J Electrochem Soc 148:E459–E463CrossRefGoogle Scholar
  39. 39.
    Martínez-Huitle CA, Ferro S (2006) Chem Soc Rev 35:1324–1340CrossRefGoogle Scholar
  40. 40.
    Zhi J-F, Wang H-B, Nakashima T, Rao TN, Fujishima A (2003) J Phys Chem B 107:13389–13395CrossRefGoogle Scholar
  41. 41.
    Vargas R, Borrás C, Plana D, Mostany J, Scharifker BR (2010) Electrochim Acta 55:6501–6506CrossRefGoogle Scholar
  42. 42.
    Murphy OJ, Hitchens GD, Kaba L, Verostko CE (1992) Water Res 26:443–451CrossRefGoogle Scholar
  43. 43.
    Borrás C, Laredo T, Mostany J, Scharifker BR (2004) Electrochim Acta 49:641–648CrossRefGoogle Scholar
  44. 44.
    Pham MC, Adami F, Lacaze P (1989) J Electrochem Soc 136:677–679CrossRefGoogle Scholar
  45. 45.
    Simond O, Schaller V, Comninellis C (1997) Electrochim Acta 42:2009–2012CrossRefGoogle Scholar
  46. 46.
    Borrás C, Rodríguez P, Laredo T, Mostany J, Scharifker BR (2004) J Appl Electrochem 34:583–589CrossRefGoogle Scholar
  47. 47.
    Vitt JE, Johnson DC (1992) J Electrochem Soc 139:774–778CrossRefGoogle Scholar
  48. 48.
    Kapałka A, Fóti G, Comninellis C (2009) Electrochim Acta 54:2018–2023CrossRefGoogle Scholar
  49. 49.
    Cong Y, Wu Z (2007) J Phys Chem C 111:3442–3446CrossRefGoogle Scholar
  50. 50.
    Borrás C, Monroy A, Mostany J, Scharifker BR (2007) Electroanalysis 19:1628–1634CrossRefGoogle Scholar
  51. 51.
    Marselli B, Garcia-Gómez J, Michaud PA, Rodrigo MA, Comninellis C (2003) J Electrochem Soc 150:D79–D83CrossRefGoogle Scholar
  52. 52.
    Enache TA, Chiorcea-Paquim AM, Fatibello-Filho O, Oliveira-Brett AM (2009) Electr Commun 11:1342–1345CrossRefGoogle Scholar
  53. 53.
    Borrás C, Berzoy C, Mostany J, Herrera JC, Scharifker BR (2007) Appl Catal B Environ 72:98–104CrossRefGoogle Scholar
  54. 54.
    Zhu X, Tong M, Shi S, Zhao H, Ni J (2008) Environ Sci Technol 42:4914–4920CrossRefGoogle Scholar
  55. 55.
    Borrás C, Berzoy C, Mostany J, Scharifker BR (2006) J Appl Electrochem 36:433–439CrossRefGoogle Scholar
  56. 56.
    Polcaro AM, Vacca A, Palmas S, Mascia M (2003) J Appl Electrochem 33:885–892CrossRefGoogle Scholar
  57. 57.
    Liu Y, Liu H, Li Y (2008) Appl Catal B Environ 84:297–302CrossRefGoogle Scholar
  58. 58.
    Scialdone O, Randazzo S, Galia A, Filardo G (2009) Electrochim Acta 54:1210–1217CrossRefGoogle Scholar
  59. 59.
    Tian M, Bakovic L, Chen A (2007) Electrochim Acta 52:6517–6524CrossRefGoogle Scholar
  60. 60.
    Vargas R, Borrás C, Mostany J, Scharifker BR (2010) Water Res 44:911–917CrossRefGoogle Scholar
  61. 61.
    Adams B, Tian M, Chen A (2009) Electrochim Acta 54:1491–1498CrossRefGoogle Scholar
  62. 62.
    Wu Z, Zhou M (2001) Environ Sci Technol 35:2698–2703CrossRefGoogle Scholar
  63. 63.
    Qu X, Tian M, Liao B, Chen A (2010) Electrochim Acta 55:5367–5374CrossRefGoogle Scholar
  64. 64.
    Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2005) Water Res 39:2687–2703CrossRefGoogle Scholar
  65. 65.
    Feng YJ, Li XY (2003) Water Res 37:2399–2407CrossRefGoogle Scholar
  66. 66.
    Belhadj Tahar N, Savall A (2009) Electrochim Acta 54:4809–4816CrossRefGoogle Scholar
  67. 67.
    Gattrell M, Kirk DW (1992) J Electrochem Soc 139:2736–2744CrossRefGoogle Scholar
  68. 68.
    Belhadj Tahar N, Savall A (1998) J Electrochem Soc 145:3427–3434CrossRefGoogle Scholar
  69. 69.
    Rajeshwar K, Ibáñez J (1997) Environmental electrochemistry Fundamentals and applications in pollution abatement. Academic Press INC, New YorkGoogle Scholar
  70. 70.
    Vargas R, Díaz S, Viele L, Núñez O, Borrás C, Mostany J, Scharifker BR (2014) Appl Catal B Environ 144:107–111CrossRefGoogle Scholar
  71. 71.
    Trasatti S (1980) J Electroanal Chem 111:125–131CrossRefGoogle Scholar
  72. 72.
    Trasatti S (1999) In: Wieckowski A (ed) Interfacial Electrochemistry: Theory, Experiment and Applications. Marcel Dekker INC, New YorkGoogle Scholar
  73. 73.
    Galizzioli D, Tantardini F, Trasatti S (1974) J Appl Electrochem 4:57–57CrossRefGoogle Scholar
  74. 74.
    Galizzioli D, Tantardini F, Trasatti S (1975) J Appl Electrochem 5:203–214CrossRefGoogle Scholar
  75. 75.
    Fachinotti E, Guerrini E, Tavares AC, Trasatti S (2007) J Electroanal Chem 600:103–112CrossRefGoogle Scholar
  76. 76.
    Li X-Y, Cui Y-H, Feng Y-J, Xie Z-M, Gu J-D (2005) Water Res 39:1972–1981CrossRefGoogle Scholar
  77. 77.
    Fierro S, Nagel T, Baltruschat H, Comninellis C (2007) Electr Commun 9:1969–1974CrossRefGoogle Scholar
  78. 78.
    Fierro S, Kapałka A, Comninellis C (2010) Electr Commun 12:172–174CrossRefGoogle Scholar
  79. 79.
    De Pauli CP, Trasatti S (2002) J Electroanal Chem 538-539:145–151CrossRefGoogle Scholar
  80. 80.
    Guo L, Li X, Chen G (2010) In: Ch Comninellis, Chen G (eds) Electrochemistry for the Environment. Springer Science + Business Media, New YorkGoogle Scholar
  81. 81.
    Lervik IA, Tsypkin M, Owe L-E, Sunde S (2010) J Electroanal Chem 645:135–142CrossRefGoogle Scholar
  82. 82.
    Fóti G, Gandini D, Comninellis C, Perret A, Haenni W (1999) Electrochem Solid-State Lett 5:228–230CrossRefGoogle Scholar
  83. 83.
    Simond O, Comninellis C (1997) Electrochim Acta 42:2013–2018CrossRefGoogle Scholar
  84. 84.
    Fierro S, Comninellis C (2010) Electrochim Acta 55:7067–7073CrossRefGoogle Scholar
  85. 85.
    Martínez-Huitle CA, Quiroz MA, Comninellis C, Ferro S, De Battisti A (2004) Electrochim Acta 50:949–956CrossRefGoogle Scholar
  86. 86.
    Pulgarin C, Alder N, Péringer P, Comninellis C (2004) Water Res 28:887–893CrossRefGoogle Scholar
  87. 87.
    Turro E, Giannis A, Cossu R, Gidarakos E, Mantzavinos D, Katsaounis A (2011) J Hazard Mater 190:460–465CrossRefGoogle Scholar
  88. 88.
    Radjenovic J, Bagastyo A, Rozendal RA, Mu Y, Keller J, Rabaey K (2011) Water Res 45:1579–1586CrossRefGoogle Scholar
  89. 89.
    Huang Y-H, Shih Y-J, Liu C-H (2011) J Hazard Mater 188:188–192CrossRefGoogle Scholar
  90. 90.
    Radjenovic J, Escher BI, Rabaey K (2011) Water Res 45:3205–3214CrossRefGoogle Scholar
  91. 91.
    Coteiro RD, De Andrade AR (2007) J Appl Electrochem 37:691–698CrossRefGoogle Scholar
  92. 92.
    Zanta CLPS, Andrade ARD, Boodts JFC (2000) J Appl Electrochem 30:467–474CrossRefGoogle Scholar
  93. 93.
    Tolba R, Tian M, Wen J, Jiang Z-H, Chen A (2010) J Electroanal Chem 649:9–15CrossRefGoogle Scholar
  94. 94.
    Do JS, Yeh WC (1995) J Appl Electrochem 25:483–489Google Scholar
  95. 95.
    Do JS, Yeh WC, Chao IY (1997) Ind Eng Chem Res 36:349–356CrossRefGoogle Scholar
  96. 96.
    Pires de Paiva Barreto J, Vieira dos Santos E, Medeiros Oliveira M, Ribeiro da Silva D, Fernández da Sousa J, Martínez-Huitle CA (2014) J Electrochem Sci Eng 4(4):259-270Google Scholar
  97. 97.
    Kumar S, Singh S, Chandra Srivastava V (2015) Chem Eng J 263:135–143CrossRefGoogle Scholar
  98. 98.
    Sopaj F, Rodrigo MA, Oturan N, Podvorica FI, Pinson J, Oturan MA (2015) Chem Eng J 262:286–294CrossRefGoogle Scholar
  99. 99.
    Schaefer CE, Andaya C, Urtiaga A (2015) Chem Eng J 264:411–416CrossRefGoogle Scholar
  100. 100.
    Li H, Yu Q, Yang B, Li Z, Lei L (2015) J Electroanal Chem 738:14–19CrossRefGoogle Scholar
  101. 101.
    Chopra KL, Mayor S, Pandya DK (1983) Thin Solid Films 102:1–46CrossRefGoogle Scholar
  102. 102.
    Shanthi S, Subramanian C, Ramasamy P (1999) J Cryst Growth 197:858–864CrossRefGoogle Scholar
  103. 103.
    Senguttuvan TD, Malhotra LK (1996) Thin Solid Films 289:22–28CrossRefGoogle Scholar
  104. 104.
    Jarzebski ZM, Marton JP (1976) J Electrochem Soc 123:199C–205CCrossRefGoogle Scholar
  105. 105.
    Jarzebski ZM, Marton JP (1976) J Electrochem Soc 123:299C–310CCrossRefGoogle Scholar
  106. 106.
    Jarzebski ZM, Marton JP (1976) J Electrochem Soc 123:333C–346CCrossRefGoogle Scholar
  107. 107.
    Liu S-M, D W-Y, Chai W-P (2011) Phys B Condens Matter 406:2303–2307CrossRefGoogle Scholar
  108. 108.
    Saadeddin I, Pecquenard B, Manaud JP, Decourt R, Labrugère C, Buffeteau T, Campet G (2007) Appl Surf Sci 253:5240–5249CrossRefGoogle Scholar
  109. 109.
    Feng HT, Zhuo RF, Chen JT, Yan D, Feng JJ, Li HJ, Cheng S, Yan PX (2009) Physica E: Low-dimensional Systems and Nanostructures 41:1640–1644CrossRefGoogle Scholar
  110. 110.
    Krishnakumar T, Jayaprakash R, Pinna N, Phani AR, Passacantando M, Santucci S (2009) J Phys Chem Solids 70:993–999CrossRefGoogle Scholar
  111. 111.
    Correa-Lozano B, Comninellis C, De Battisti A (1996) J Electrochem Soc 143:203–209CrossRefGoogle Scholar
  112. 112.
    Correa-Lozano B, Comninellis C, De Battisti A (1996) J Appl Electrochem 26:683–688CrossRefGoogle Scholar
  113. 113.
    Correa-Lozano B, Comninellis C, De Battisti A (1996) J Appl Electrochem 26:83–89CrossRefGoogle Scholar
  114. 114.
    Correa-Lozano B, Comninellis C, De Battisti A (1997) J Appl Electrochem 26:970–974CrossRefGoogle Scholar
  115. 115.
    Kötz R, Stucki S, Carcer B (1991) J Appl Electrochem 21:14–20CrossRefGoogle Scholar
  116. 116.
    Stucki S, Kötz R, Carcer B, Suter W (1991) J Appl Electrochem 21:99–104CrossRefGoogle Scholar
  117. 117.
    Cui Y-H, Feng Y-J, Liu Z-Q (2009) Electrochim Acta 54:4903–4909CrossRefGoogle Scholar
  118. 118.
    Del Río AI, Fernández J, Molina J, Bonastre J, Cases F (2011) Desalination 273:428–435CrossRefGoogle Scholar
  119. 119.
    Chen L-C, Tsai F-R, Fang S-H, Ho Y-C (2009) Electrochim Acta 54:1304–1311CrossRefGoogle Scholar
  120. 120.
    Xu L, Li M, Xu W (2015) Electrochim Acta 166:64–72CrossRefGoogle Scholar
  121. 121.
    Zhang L, Xu L, He J, Zhang J (2014) Electrochim Acta 117:192–121CrossRefGoogle Scholar
  122. 122.
    Zhao G, Cui X, Liu M, Li P, Zhang Y, Cao T, Li H, Lei Y, Liu L, Li D (2009) Environ Sci Technol 43:1480–1486CrossRefGoogle Scholar
  123. 123.
    Han W, Zhong C, Liang L, Sun Y, Guan Y, Wang L, Sun X, Li J (2014) Electrochim Acta 130:179–186CrossRefGoogle Scholar
  124. 124.
    Zhong C, Wei K, Han W, Wang L, Sun X, Li J (2013) J Electroanal Chem 705:68–74CrossRefGoogle Scholar
  125. 125.
    Berenguer R, Quijada C, Morallón E (2009) Electrochim Acta 54:5230–5238CrossRefGoogle Scholar
  126. 126.
    Shao D, Liang J, Cui X, Xu H, Yan W (2014) Chem Eng J 244:288–295CrossRefGoogle Scholar
  127. 127.
    Berenguer R, Sieben JM, Quijada C, Morallón E (2014) Appl Mater Interfaces 6(24):22778–22789CrossRefGoogle Scholar
  128. 128.
    Zhou N, Polavarapu L, Wang Q, Xu Q-H (2015) Appl Math Interfaces 7(8):4844–4850CrossRefGoogle Scholar
  129. 129.
    Duan T, Wen Q, Chen Y, Zhou Y, Duan Y (2014) J Hazard Mater 280:304–314CrossRefGoogle Scholar
  130. 130.
    Wu W, Huang Z-H, Lim T-T (2014) Appl Catal A Gen 480:58–78CrossRefGoogle Scholar
  131. 131.
    Li X, Pletcher D, Walsh FC (2011) Chem Soc Rev 40:3879–3894CrossRefGoogle Scholar
  132. 132.
    Velichenko AB, Girenko DV, Danilov FI (1995) Electrochim Acta 40:2803–2807CrossRefGoogle Scholar
  133. 133.
    Velichenko AB, Girenko DV, Danilov FI (1996) J Electroanal Chem 405:127–132CrossRefGoogle Scholar
  134. 134.
    Velichenko AB, Amadelli R, Baranova EA, Girenko DV, Danilov FI (2002) Electroanal Chem 527:56–64CrossRefGoogle Scholar
  135. 135.
    Abyaneh MY, Sáez V, González-Garcías J, Manson TJ (2010) Electrochim Acta 55:3572–3579CrossRefGoogle Scholar
  136. 136.
    Sáez V, Marchante E, Díez MI, Esclapez MD, Bonete P, Lana-Villareal T, González-Garcías J, Mostany J (2011) Mater Chem Phys 125:46–54CrossRefGoogle Scholar
  137. 137.
    Pech D, Brousse T, Bélanger D, Guay D (2009) Electrochim Acta 54:7382–7388CrossRefGoogle Scholar
  138. 138.
    LaCourse WR, Hsiao Y-L, Johnson DC, Weber WH (1989) J Electrochem Soc 136:3714–3719CrossRefGoogle Scholar
  139. 139.
    Yeo I-H, Kim S, Jacobson R, Johnson DC (1989) J Electrochem Soc 136:1395–1401CrossRefGoogle Scholar
  140. 140.
    Kawagoe KT, Johnson DC (1994) J Electrochem Soc 141:3404–3409CrossRefGoogle Scholar
  141. 141.
    Larew LA, Gordon JS, Hsiao Y-L, Johnson DC (1990) J Electrochem Soc 137:3071–3078CrossRefGoogle Scholar
  142. 142.
    Shmychkova O, Luk’yanenko T, Piletska A, Velichenko A, Gladyshevskii R, Demechenko P, Amadelli R (2015) J Electroanal Chem 746:57–61CrossRefGoogle Scholar
  143. 143.
    Andrade LS, Ruotolo LAM, Rocha-Filho RC, Bocchi N, Biaggio SR, Iniesta J, Garcías-García V, Montiel V (2007) Chemosphere 66:2035–2043CrossRefGoogle Scholar
  144. 144.
    Panizza M, Cerisola G (2008) Ind Eng Chem Res 47:6816–6820CrossRefGoogle Scholar
  145. 145.
    Panizza M, Sirés I, Cerisola G (2008) J Appl Electrochem 38:923–929CrossRefGoogle Scholar
  146. 146.
    Weiss E, Groenen-Serano K, Savall A (2006) J New Mater Electrochem Syst 9:249–256Google Scholar
  147. 147.
    Poll C, Payne D (2015) Electrochim Acta 156:283–288CrossRefGoogle Scholar
  148. 148.
    Tan C, Xiang B, Li Y, Fang J, Huang M (2011) Chem Eng J 166:15–21CrossRefGoogle Scholar
  149. 149.
    Chen J, Xia Y, Dai Q (2015) Electrochim Acta 165:277–287CrossRefGoogle Scholar
  150. 150.
    Xia Y, Dai Q, Chen J (2015) J Electroanal Chem 744:117–125CrossRefGoogle Scholar
  151. 151.
    Wang Y-S, Yang F, Liu Z-H, Yuan L, Li G (2015) Catal Commun 67:49–53CrossRefGoogle Scholar
  152. 152.
    Chen Y, Li H, Liu W, Tu Y, Zhang Y, Han W, Wang L (2014) Chemosphere 113:48–55CrossRefGoogle Scholar
  153. 153.
    Shmychkova O, Luk’yanenko T, Yakubenko A, Amadelli R, Velichenko A (2015) Appl Catal B Environ 162:346–351CrossRefGoogle Scholar
  154. 154.
    Mostany J, Scharifker BR, Borrás C (2009) Bol Acad C Fis Mat Nat 69(4):9–34Google Scholar
  155. 155.
    Gattrell M, Kirk DW (1990) Can J Chem Eng 68:997–1003CrossRefGoogle Scholar
  156. 156.
    Skowronski JM, Krawczyk P (2007) J Solid State Electrochem 11:223–230CrossRefGoogle Scholar
  157. 157.
    Polcaro AM, Palmas S, Renoldi F, Mascia M (2000) Electrochim Acta 46:389–394CrossRefGoogle Scholar
  158. 158.
    Polcaro AM, Palmas S (1997) Ind Eng Chem Res 36:1791–1798CrossRefGoogle Scholar
  159. 159.
    Yi F, Chen S, Yuan C (2008) J Hazard Mater 157:79–87CrossRefGoogle Scholar
  160. 160.
    Fan L, Zhou Y, Yang W, Chen G, Yang F (2008) Dyes Pigments 76:440–446CrossRefGoogle Scholar
  161. 161.
    Zhu X, Ni J, Xing X, Li H, Yi J (2011) Electrochim Acta 56:1270–1274CrossRefGoogle Scholar
  162. 162.
    Wei J, Zhu X, Ni J (2011) Electrochim Acta 56:5310–5315CrossRefGoogle Scholar
  163. 163.
    Montilla F, Michaud PA, Morallón E, Vázquez JL, Comninellis C (2002) Electrochim Acta 47:3509–3513CrossRefGoogle Scholar
  164. 164.
    García-Segura S, Brillas E (2011) Water Res 45:2975–2984CrossRefGoogle Scholar
  165. 165.
    Sun J, Lu H, Du L, Lin H, Li H (2011) Appl Surf Sci 257:6667–6671CrossRefGoogle Scholar
  166. 166.
    Zhu X, Ni J, Wei J, Xing X, Li H (2011) J Hazard Mater 189:127–133CrossRefGoogle Scholar
  167. 167.
    Kraft A, Stadelmann M, Blaschke M (2003) J Hazard Mater 103:247–261CrossRefGoogle Scholar
  168. 168.
    Sáez C, Cañizares P, Llanos J, Rodrigo MA (2013) Electrocatal 4(4):252-258Google Scholar
  169. 169.
    Hubler DK, Baygents JC, Chaplin BP, Farrell J (2014) J Electrochem Soc 161(12):E182–E189CrossRefGoogle Scholar
  170. 170.
    Donaghue A, Chaplin BP (2013) Environ Sci Technol 47(21):12391–12399CrossRefGoogle Scholar
  171. 171.
    Azizi O, Hubler D, Schrader G, Farrell J, Chaplin BP (2010) Environ Sci Technol 44(5):1773–1779CrossRefGoogle Scholar
  172. 172.
    Uranga-Flores A, de la Rosa-Júarez C, Gutierrez-Granados S, de Moura DC, Martínez-Huitle CA, Peralta-Hernández JM (2015) J Electroanal Chem 738:84–91CrossRefGoogle Scholar
  173. 173.
    Scialdone O (2009) Electrochim Acta 54:6140–6147CrossRefGoogle Scholar
  174. 174.
    Scialdone O, Galia A, Randazzo S (2012) Chem Eng J 183:124–134CrossRefGoogle Scholar
  175. 175.
    Oliveira R, Geraldo D, Bento F (2014) Electrochim Acta 135:19–26CrossRefGoogle Scholar
  176. 176.
    Polcaro AM, Mascia M, Palmas S, Vacca A (2002) Ind Eng Chem Res 41:2874–2881CrossRefGoogle Scholar
  177. 177.
    Cañizares P, García-Gómez J, Lobato J, Rodrigo MA (2004) Ind Eng Chem Res 43:1915–1922CrossRefGoogle Scholar
  178. 178.
    Cañizares P, García-Gómez J, Lobato J, Rodrigo MA (2004) Ind Eng Chem Res 43:1923–1931CrossRefGoogle Scholar
  179. 179.
    Rodrigo MA, Cañizares P, Lobato J, Sáez C (2010) In: Ch Comninellis, Chen G (eds) Electrochemistry for the Environment. Springer Science + Business Media, New YorkGoogle Scholar
  180. 180.
    Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2003) Electr Commun 5:43–846CrossRefGoogle Scholar
  181. 181.
    Camara GA, Iwasita T (2005) J Electroanal Chem 574:315–321CrossRefGoogle Scholar
  182. 182.
    Farias MJS, Camara GA, Tanaka AA, Iwasita T (2007) J Electroanal Chem 600:36–242CrossRefGoogle Scholar
  183. 183.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96CrossRefGoogle Scholar
  184. 184.
    Gu B, Schmitt J, Chen Z, Ll L, JF MC (1994) Environ Sci Technol 28:38–46CrossRefGoogle Scholar
  185. 185.
    Özkaya B (2006) J Hazard Mater B 129:158–163CrossRefGoogle Scholar
  186. 186.
    Vargas R, Núñez O (2009) J Mol Catal A Chem 300:65–71CrossRefGoogle Scholar
  187. 187.
    Batista EA, Iwasita T (2006) Langmuir 22:7912–7916CrossRefGoogle Scholar
  188. 188.
    Matthews RW (1987) J Phys Chem 91:3328–3333CrossRefGoogle Scholar
  189. 189.
    Baxter RJ, Hu P (2002) J Chem Phys 116:4379–4381CrossRefGoogle Scholar
  190. 190.
    Scott K (1992) J Electroanal Chem 325:1–22CrossRefGoogle Scholar
  191. 191.
    Vargas R, Núñez O (2008) J Mol Catal A Chem 294:74–81CrossRefGoogle Scholar
  192. 192.
    Pardo G, Vargas R, Núñez O (2008) J Phys Org Chem 21:1072–1078CrossRefGoogle Scholar
  193. 193.
    Madriz L, Carrero H, Herrera J, Cabrera A, Canudas N, Fernández L (2011) Top Catal 54:236–243CrossRefGoogle Scholar
  194. 194.
    Laviron E (1981) J Electroanal Chem 124:19–33CrossRefGoogle Scholar
  195. 195.
    Laviron E (1982) J Electroanal Chem 140:247–268CrossRefGoogle Scholar
  196. 196.
    Vargas R, Núñez O (2010) Sol Energy 84:345–351CrossRefGoogle Scholar
  197. 197.
    Liu B, Zhao X, Terashima C, Fujishima A, Nakata K (2014) Phys Chem Chem Phys 16:8751–8760CrossRefGoogle Scholar
  198. 198.
    Levich VG (1962) Physicochemical hydrodynamics Prentice-Hall. Englewood Cliffs, New JerseyGoogle Scholar
  199. 199.
    Koutecký J, Levich VG (1956) Zh Fiz Khim 32:1565–1575Google Scholar
  200. 200.
    Arvia AJ, Marchiano SL (1971) In: JO’M Bockris, Conway BE (eds) Modern Aspects of Electrochemistry No 6. New York, Plenum PressGoogle Scholar
  201. 201.
    Brukenstein S, Miller B (1977) Acc Chem Res 10:54–61CrossRefGoogle Scholar
  202. 202.
    Vargas R, Borrás C, Mostany J, Scharifker BR (2012) Electrochim Acta 80:326–333CrossRefGoogle Scholar
  203. 203.
    Méndez D, Vargas R, Borrás C, Blanco S, Mostany J, Scharifker BR (2015) Appl Catal B Environ 166-167:529–534CrossRefGoogle Scholar
  204. 204.
    Liu Y, Liu H, Ma J, Wang X (2009) Appl Catal B Environ 91:284–299CrossRefGoogle Scholar
  205. 205.
    Wang Y-Q, Gu B, Xu W-L (2009) J Hazard Mater 162:1159–1164CrossRefGoogle Scholar
  206. 206.
    Rabaaoui N, El Khames SM, Moussaoui Y, Salah Allagui M, Bedoui A, Elaloui E (2013) J Hazard Mater 250-251:447–453CrossRefGoogle Scholar
  207. 207.
    Madsen HT, Sogaard EG, Muff J (2014) Chemosphere 109:84–91CrossRefGoogle Scholar
  208. 208.
    O’Shea KE, Cardona C (1994) J Org Chem 59(17):5005–5009CrossRefGoogle Scholar
  209. 209.
    Liu Y, Liu H, Ma J, Li J (2012) J Hazard Mater 213-214:222–229CrossRefGoogle Scholar
  210. 210.
    Torres RA, Torres W, Peringer P, Pulgarin C (2003) Chemosphere 50:97–104CrossRefGoogle Scholar
  211. 211.
    Jiang Y, Zhu X, Li H, Ni J (2010) Chemosphere 78:1093–1099CrossRefGoogle Scholar
  212. 212.
    McIntyre JDE, Aspnes DE (1971) Surf Sci 24:417–434CrossRefGoogle Scholar
  213. 213.
    Kolb DM (1988) In: Gale R (ed) Spectroelectrochemistry: theory and practice. New York, Plenum PressGoogle Scholar
  214. 214.
    Ashley K, Pons S (1986) Trends Anal Chem 5:263–268CrossRefGoogle Scholar
  215. 215.
    Armstrong G, Butler JAV (1933) Trans Faraday Soc 29:1261–1266CrossRefGoogle Scholar
  216. 216.
    Harrington DA, Conway BE (1987) J Electroanal Chem 221:1–21CrossRefGoogle Scholar
  217. 217.
    Tilak BV, Conway BE (1976) Electrochim Acta 21:745–752CrossRefGoogle Scholar
  218. 218.
    Feng Y, Liu L, Fang Y, Guo Q-X (2005) J Phys Chem A 109:3344–3351CrossRefGoogle Scholar
  219. 219.
    Gadosy TA, Shukla D, Johnston LJ (1999) J Phys Chem A 103:8834–8839CrossRefGoogle Scholar
  220. 220.
    Feng Y, Liu L, Fang Y, Guo Q-X (2002) J Phys Chem A 106:11518–11525CrossRefGoogle Scholar
  221. 221.
    Nath Das T (2005) J Phys Chem A 109:3344–3351CrossRefGoogle Scholar
  222. 222.
    Raghavan NV, Steenken S (1980) J Am Chem Soc 102(10):3495–3499CrossRefGoogle Scholar
  223. 223.
    Mvula E, Schuchmann MN, von Sonntagh C (2001) J Chem Soc Perkin Trans 2:264–268CrossRefGoogle Scholar
  224. 224.
    Vedernikova I, Tollenaere JP, Haemers A (1999) J Phys Org Chem 12:144–150CrossRefGoogle Scholar
  225. 225.
    Kusic H, Rasulev B, Leszczynska D, Leszczynski J, Koprivanac N (2009) Chemosphere 75:1128–1134CrossRefGoogle Scholar
  226. 226.
    Minakata D, Crittenden J (2011) Environ Sci Technol 45:3479–3486CrossRefGoogle Scholar
  227. 227.
    Minakata D, Li K, Westerhoff P, Crittenden J (2009) Environ Sci Technol 43:6220–6227CrossRefGoogle Scholar
  228. 228.
    Kiliç M, Koçtürk G, San N, Çinar Z (2007) Chemosphere 69:1396–1408CrossRefGoogle Scholar
  229. 229.
    Carberry JJ (2001) Chemical and catalytic reaction engineering Dover Publications. Inc, New YorkGoogle Scholar
  230. 230.
    Jaffé HH (1953) Chem Rev 53(2):191–261CrossRefGoogle Scholar
  231. 231.
    Dunn IJ (1968) J Catal 12(4):335–340CrossRefGoogle Scholar
  232. 232.
    Dunn IJ (1968) J Catal 11(1):79–81CrossRefGoogle Scholar
  233. 233.
    Zagal JH (1992) Coord Chem Rev 119:89–136CrossRefGoogle Scholar
  234. 234.
    Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Phys Chem Chem Phys 9:3383–3396CrossRefGoogle Scholar
  235. 235.
    Zagal JH, Griveau S, Francisco-Silva J, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755–2791CrossRefGoogle Scholar
  236. 236.
    Appleby AJ, Zagal JH (2011) J Solid State Electrochem 15:1811–1832CrossRefGoogle Scholar
  237. 237.
    Tasca F, Recio J, Venegas R, Geraldo DA, Sancy M, Zagal JH (2014) Electrochim Acta 140:314–319CrossRefGoogle Scholar
  238. 238.
    Ramesh Babu B, Sasi S, Raravanan Saravanan K, Vadiviel Murugan N (2011) Sustain Environ Res 21(2):109–116Google Scholar
  239. 239.
    Huguenot D, Mousset E, van Hullebusch ED, Oturan MA (2015) J Environ Manag 153:40–47CrossRefGoogle Scholar
  240. 240.
    Ganzenko O, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2014) Environ Sci Pollut Res 21(14):8493–8524CrossRefGoogle Scholar
  241. 241.
    Rodrigo MA, Oturan N, Oturan MA (2014) Chem Revs 114(17):8720–8745CrossRefGoogle Scholar
  242. 242.
    Cifuentes L, Flores D, Madriz L, Vargas R (2015) Quim Nova, in the press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ronald Vargas
    • 1
  • Carlos Borrás
    • 1
  • Daniel Méndez
    • 1
  • Jorge Mostany
    • 1
  • Benjamín R. Scharifker
    • 1
    • 2
  1. 1.Departamento de QuímicaUniversidad Simón BolívarCaracasVenezuela
  2. 2.Universidad MetropolitanaCaracasVenezuela

Personalised recommendations